Exemplo n.º 1
0
 def test_add_gate_in_parametric_circuit(self):
     from qulacs import ParametricQuantumCircuit
     from qulacs.gate import X
     circuit = ParametricQuantumCircuit(1)
     gate = X(0)
     circuit.add_gate(gate)
     del gate
     s = circuit.to_string()
     del circuit
 def create_initial_output_gate(self):
     """output用ゲートU_outの組み立て&パラメータ初期値の設定"""
     u_out = ParametricQuantumCircuit(self.nqubit)
     time_evol_gate = create_time_evol_gate(self.nqubit)
     theta = 2.0 * np.pi * np.random.rand(self.c_depth, self.nqubit, 3)
     self.theta = theta.flatten()
     for d in range(self.c_depth):
         u_out.add_gate(time_evol_gate)
         for i in range(self.nqubit):
             u_out.add_parametric_RX_gate(i, theta[d, i, 0])
             u_out.add_parametric_RZ_gate(i, theta[d, i, 1])
             u_out.add_parametric_RX_gate(i, theta[d, i, 2])
     self.output_gate = u_out
Exemplo n.º 3
0
    def create_initial_output_gate(self):
        """Output gate U_out and parameter setting"""
        u_out = ParametricQuantumCircuit(self.nqubit)

        if self.time_evol_hamiltonian_type == 'Ising':
            time_evol_gate = create_Ising_time_evol_gate(self.nqubit)
        else:
            time_evol_gate = create_Heisenberg_time_evol_gate(self.nqubit)

        theta = 2.0 * np.pi * np.random.rand(self.c_depth, self.nqubit, 3)
        self.theta = theta.flatten()
        for d in range(self.c_depth):
            u_out.add_gate(time_evol_gate)
            for i in range(self.nqubit):
                u_out.add_parametric_RX_gate(i, theta[d, i, 0])
                u_out.add_parametric_RZ_gate(i, theta[d, i, 1])
                u_out.add_parametric_RX_gate(i, theta[d, i, 2])
        self.output_gate = u_out
Exemplo n.º 4
0
def test_VqeOptimizer():
    from qulacs import ParametricQuantumCircuit
    from qulacs import QuantumState
    from qulacs import Observable
    from qulacs.gate import Probabilistic, X, Y, Z
    import numpy as np
    import matplotlib.pyplot as plt

    n_qubit = 2
    p_list = [0.05, 0.1, 0.15]
    parametric_circuit_list = \
        [ParametricQuantumCircuit(n_qubit)
         for i in range(len(p_list))]
    initial_state = QuantumState(n_qubit)

    for (p, circuit) in zip(p_list, parametric_circuit_list):
        circuit.add_H_gate(0)
        circuit.add_parametric_RY_gate(1, np.pi / 6)
        circuit.add_CNOT_gate(0, 1)
        prob = Probabilistic([p / 4, p / 4, p / 4], [X(0), Y(0), Z(0)])
        circuit.add_gate(prob)

    noiseless_circuit = ParametricQuantumCircuit(n_qubit)
    noiseless_circuit.add_H_gate(0)
    noiseless_circuit.add_parametric_RY_gate(1, np.pi / 6)
    noiseless_circuit.add_CNOT_gate(0, 1)

    n_sample_per_circuit = 1
    n_circuit_sample = 1000
    obs = Observable(n_qubit)
    obs.add_operator(1.0, "Z 0 Z 1")
    obs.add_operator(0.5, "X 0 X 1")
    initial_param = np.array([np.pi / 6])

    opt = VqeOptimizer(parametric_circuit_list,
                       initial_state,
                       obs,
                       initial_param,
                       p_list,
                       n_circuit_sample=n_circuit_sample,
                       n_sample_per_circuit=n_sample_per_circuit,
                       noiseless_circuit=noiseless_circuit)

    noisy = opt.sample_output(initial_param)
    mitigated, exp_array, _ = opt.sample_mitigated_output(initial_param,
                                                          return_full=True)
    exact = opt.exact_output(initial_param)

    print(noisy, exact)
    print(exp_array, mitigated)

    opt_param = opt.optimize()
    print(opt_param)
    theta_list = np.linspace(0, np.pi, 100)
    output_list = [opt.exact_output([theta]) for theta in theta_list]
    plt.plot(theta_list,
             output_list,
             color="black",
             linestyle="dashed",
             label="exact")
    plt.scatter(opt.parameter_history,
                opt.exp_history,
                c="blue",
                label="optimization history")
    plt.xlabel("theta")
    plt.ylabel("output")
    plt.legend()
    plt.show()
Exemplo n.º 5
0
    def test_parametric_gate_position(self):

        from qulacs import ParametricQuantumCircuit, QuantumState
        from qulacs.gate import ParametricRX

        def check(pqc, idlist):
            cnt = pqc.get_parameter_count()
            self.assertEqual(cnt, len(idlist))
            for ind in range(cnt):
                pos = pqc.get_parametric_gate_position(ind)
                self.assertEqual(pos, idlist[ind])

        pqc = ParametricQuantumCircuit(1)
        gate = ParametricRX(0, 0.1)
        pqc.add_parametric_gate(gate)  # [0]
        check(pqc, [0])
        pqc.add_parametric_gate(gate)  # [0, 1]
        check(pqc, [0, 1])
        pqc.add_gate(gate)  # [0, 1, *]
        check(pqc, [0, 1])
        pqc.add_parametric_gate(gate, 0)  # [2, 0, 1, *]
        check(pqc, [1, 2, 0])
        pqc.add_gate(gate, 0)  # [*, 2, 0, 1, *]
        check(pqc, [2, 3, 1])
        pqc.add_parametric_gate(gate, 0)  # [3, *, 2, 0, 1, *]
        check(pqc, [3, 4, 2, 0])
        pqc.remove_gate(4)  # [2, *, 1, 0, *]
        check(pqc, [3, 2, 0])
        pqc.remove_gate(1)  # [2, 1, 0, *]
        check(pqc, [2, 1, 0])
        pqc.add_parametric_gate(gate)  # [2, 1, 0, *, 3]
        check(pqc, [2, 1, 0, 4])
        pqc.add_parametric_gate(gate, 2)  # [2, 1, 4, 0, *, 3]
        check(pqc, [3, 1, 0, 5, 2])
        pqc.remove_gate(3)  # [1, 0, 3, *, 2]
        check(pqc, [1, 0, 4, 2])
Exemplo n.º 6
0
 def f():
     circuit = ParametricQuantumCircuit(1)
     gate = ParametricRX(0, 0.1)
     circuit.add_parametric_gate(gate)
     circuit.add_parametric_gate(gate)
     circuit.add_gate(gate)
     gate.set_parameter_value(0.2)
     circuit.add_parametric_gate(gate)
     circuit.add_parametric_RX_gate(0, 0.3)
     gate2 = gate.copy()
     gate2.set_parameter_value(0.4)
     gate.set_parameter_value(1.0)
     del gate
     circuit.add_parametric_gate(gate2)
     circuit.remove_gate(1)
     del gate2
     return circuit
Exemplo n.º 7
0
    def test_circuit_add_parametric_gate(self):
        from qulacs import ParametricQuantumCircuit, QuantumState
        from qulacs.gate import Identity, X, Y, Z, H, S, Sdag, T, Tdag, sqrtX, sqrtXdag, sqrtY, sqrtYdag
        from qulacs.gate import P0, P1, U1, U2, U3, RX, RY, RZ, CNOT, CZ, SWAP, TOFFOLI, FREDKIN, Pauli, PauliRotation
        from qulacs.gate import DenseMatrix, SparseMatrix, DiagonalMatrix, RandomUnitary, ReversibleBoolean, StateReflection
        from qulacs.gate import BitFlipNoise, DephasingNoise, IndependentXZNoise, DepolarizingNoise, TwoQubitDepolarizingNoise, AmplitudeDampingNoise, Measurement
        from qulacs.gate import merge, add, to_matrix_gate, Probabilistic, CPTP, Instrument, Adaptive
        from qulacs.gate import ParametricRX, ParametricRY, ParametricRZ, ParametricPauliRotation
        from scipy.sparse import lil_matrix
        qc = ParametricQuantumCircuit(3)
        qs = QuantumState(3)
        ref = QuantumState(3)
        sparse_mat = lil_matrix((4, 4))
        sparse_mat[0, 0] = 1
        sparse_mat[1, 1] = 1

        def func(v, d):
            return (v + 1) % d

        def adap(v):
            return True

        gates = [
            Identity(0), X(0), Y(0), Z(0), H(0), S(0), Sdag(0), T(0), Tdag(0), sqrtX(0), sqrtXdag(0), sqrtY(0), sqrtYdag(0),
            Probabilistic([0.5, 0.5], [X(0), Y(0)]), CPTP([P0(0), P1(0)]), Instrument([P0(0), P1(0)], 1), Adaptive(X(0), adap),
            CNOT(0, 1), CZ(0, 1), SWAP(0, 1), TOFFOLI(0, 1, 2), FREDKIN(0, 1, 2), Pauli([0, 1], [1, 2]), PauliRotation([0, 1], [1, 2], 0.1),
            DenseMatrix(0, np.eye(2)), DenseMatrix([0, 1], np.eye(4)), SparseMatrix([0, 1], sparse_mat),
            DiagonalMatrix([0, 1], np.ones(4)), RandomUnitary([0, 1]), ReversibleBoolean([0, 1], func), StateReflection(ref),
            BitFlipNoise(0, 0.1), DephasingNoise(0, 0.1), IndependentXZNoise(0, 0.1), DepolarizingNoise(0, 0.1), TwoQubitDepolarizingNoise(0, 1, 0.1),
            AmplitudeDampingNoise(0, 0.1), Measurement(0, 1), merge(X(0), Y(1)), add(X(0), Y(1)), to_matrix_gate(X(0)),
            P0(0), P1(0), U1(0, 0.), U2(0, 0., 0.), U3(0, 0., 0., 0.), RX(0, 0.), RY(0, 0.), RZ(0, 0.),
        ]

        gates.append(merge(gates[0], gates[1]))
        gates.append(add(gates[0], gates[1]))

        parametric_gates = [
            ParametricRX(0, 0.1), ParametricRY(0, 0.1), ParametricRZ(0, 0.1), ParametricPauliRotation([0, 1], [1, 1], 0.1)
        ]

        ref = None
        for gate in gates:
            qc.add_gate(gate)

        for gate in gates:
            qc.add_gate(gate)

        for pgate in parametric_gates:
            qc.add_parametric_gate(pgate)

        for pgate in parametric_gates:
            qc.add_parametric_gate(pgate)

        qc.update_quantum_state(qs)
        qc = None
        qs = None
        for gate in gates:
            gate = None
        for pgate in parametric_gates:
            gate = None

        gates = None
        parametric_gates = None
Exemplo n.º 8
0
    input_train.append(d[0])
    value_train.append(d[1])

for d in test_data:
    input_test.append(d[0])
    value_test.append(d[1])


## Basic gates
I_mat = np.eye(2, dtype=complex)
X_mat = X(0).get_matrix()
Z_mat = Z(0).get_matrix()


# Construct an output gate U_out and initialization.
U_out = ParametricQuantumCircuit(nqubit)
for d in range(c_depth):
    for i in range(nqubit):
        angle = 2.0 * np.pi * np.random.rand()
        U_out.add_parametric_RX_gate(i,angle)
        angle = 2.0 * np.pi * np.random.rand()
        U_out.add_parametric_RZ_gate(i,angle)
        angle = 2.0 * np.pi * np.random.rand()
        U_out.add_parametric_RX_gate(i,angle)
meas0 = Measurement(0, 0)
U_out.add_gate(meas0)
meas1 = Measurement(1, 1)
U_out.add_gate(meas1)
#meas2 = Measurement(2, 2)
#U_out.add_gate(meas2)