Exemplo n.º 1
0
def sp_expm(A, sparse=False):
    """
    Sparse matrix exponential.    
    """
    if _isdiag(A.indices, A.indptr, A.shape[0]):
        A.data = np.exp(A.data)
        return A
    if sparse:
        E = spla.expm(A.tocsc())
    else:
        E = spla.expm(A.toarray())
    return sp.csr_matrix(E)
Exemplo n.º 2
0
def sp_expm(A, sparse=False):
    """
    Sparse matrix exponential.    
    """
    if _isdiag(A.indices, A.indptr, A.shape[0]):
        A = sp.diags(np.exp(A.diagonal()), shape=A.shape, 
                    format='csr', dtype=complex)
        return A
    if sparse:
        E = spla.expm(A.tocsc())
    else:
        E = spla.expm(A.toarray())
    return sp.csr_matrix(E)
Exemplo n.º 3
0
def sp_expm(A, sparse=False):
    """
    Sparse matrix exponential.
    """
    if _isdiag(A.indices, A.indptr, A.shape[0]):
        A = sp.diags(np.exp(A.diagonal()), shape=A.shape,
                    format='csr', dtype=complex)
        return A
    if sparse:
        E = spla.expm(A.tocsc())
    else:
        E = spla.expm(A.toarray())
    return sp.csr_matrix(E)
Exemplo n.º 4
0
def sp_isdiag(A):
    """Determine if sparse CSR matrix is diagonal.
    
    Parameters
    ----------
    A : csr_matrix, csc_matrix
        Input matrix
        
    Returns
    -------
    isdiag : int
        True if matix is diagonal, False otherwise.
    
    """
    if not sp.isspmatrix_csr(A):
        raise TypeError('Input sparse matrix must be in CSR format.')
    return _isdiag(A.indices, A.indptr, A.shape[0])
Exemplo n.º 5
0
def sp_isdiag(A):
    """Determine if sparse CSR matrix is diagonal.

    Parameters
    ----------
    A : csr_matrix, csc_matrix
        Input matrix

    Returns
    -------
    isdiag : int
        True if matix is diagonal, False otherwise.

    """
    if not sp.isspmatrix_csr(A):
        raise TypeError('Input sparse matrix must be in CSR format.')
    return _isdiag(A.indices, A.indptr, A.shape[0])
Exemplo n.º 6
0
def sp_expm(A, p=13, sparse=False):
    """
    Sparse matrix exponential.
    
    Reference
    ---------
    Expokit, ACM-Transactions on Mathematical Software, 24(1):130-156, 1998
    
    """
    if _isdiag(A.indices, A.indptr, A.shape[0]):
        A.data = np.exp(A.data)
        return A
    N = A.shape[0]
    c = np.zeros(p + 1, dtype=float)
    # Pade coefficients
    c[0] = 1
    for k in range(p):
        c[k + 1] = c[k] * ((p - k) / ((k + 1.0) * (2.0 * p - k)))
    # Scaling
    if sparse:
        A = A.tocsc()
        nrm = spla.norm(A, np.inf)
    else:
        A = A.toarray()
        nrm = la.norm(A, np.inf)
    if nrm > 0.5:
        nrm = max(0, np.fix(np.log(nrm) / np.log(2)) + 2)
        A = 2.0**(-nrm) * A
    # Horner evaluation of the irreducible fraction
    if sparse:
        I = sp.identity(N, dtype=complex, format='csc')
    else:
        I = np.identity(N, dtype=complex)
    A2 = A.dot(A)
    Q = c[-1] * I
    P = c[p] * I
    odd = 1
    for k in range(p - 2, -1, -1):
        if odd == 1:
            Q = Q.dot(A2) + c[k] * I
        else:
            P = P.dot(A2) + c[k] * I
        odd = 1 - odd
    if odd == 1:
        Q = Q.dot(A)
        Q = Q - P
        if sparse:
            E = -(I + 2.0 * spla.spsolve(Q, P))
        else:
            E = -(I + 2.0 * la.solve(Q, P))
    else:
        P = P.dot(A)
        Q = Q - P
        if sparse:
            E = I + 2.0 * spla.spsolve(Q, P)
        else:
            E = I + 2.0 * la.solve(Q, P)
    # Squaring
    for k in range(int(nrm)):
        E = E.dot(E)

    return sp.csr_matrix(E)
Exemplo n.º 7
0
def sp_expm(A, p=13, sparse=False):
    """
    Sparse matrix exponential.
    
    Reference
    ---------
    Expokit, ACM-Transactions on Mathematical Software, 24(1):130-156, 1998
    
    """
    if _isdiag(A.indices, A.indptr, A.shape[0]):
        A.data = np.exp(A.data)
        return A
    N = A.shape[0]
    c = np.zeros(p+1,dtype=float)
    # Pade coefficients
    c[0] = 1
    for k in range(p):
        c[k+1] = c[k]*((p-k)/((k+1.0)*(2.0*p-k)))
    # Scaling
    if sparse:
        A = A.tocsc()
        nrm = spla.norm(A, np.inf)
    else:
        A = A.toarray()
        nrm = la.norm(A, np.inf)
    if nrm > 0.5:
        nrm = max(0, np.fix(np.log(nrm)/np.log(2))+2)
        A = 2.0**(-nrm)*A
    # Horner evaluation of the irreducible fraction
    if sparse:
        I = sp.identity(N, dtype=complex, format='csc')
    else:
        I = np.identity(N, dtype=complex)
    A2 = A.dot(A)
    Q = c[-1]*I
    P = c[p]*I
    odd = 1
    for k in range(p-2,-1,-1):
        if odd == 1:
            Q = Q.dot(A2) +c[k]*I
        else:
            P = P.dot(A2) +c[k]*I
        odd = 1-odd
    if odd == 1:
        Q = Q.dot(A)
        Q = Q-P
        if sparse:
            E = -(I+2.0*spla.spsolve(Q,P))
        else:
            E = -(I+2.0*la.solve(Q,P))
    else:
        P = P.dot(A)
        Q = Q-P
        if sparse:
            E = I+2.0*spla.spsolve(Q,P)
        else:
            E = I+2.0*la.solve(Q,P)
    # Squaring
    for k in range(int(nrm)):
        E = E.dot(E)
       
    return sp.csr_matrix(E)