Exemplo n.º 1
0
def steadystate_nonlinear(L_func,
                          rho0,
                          args={},
                          maxiter=10,
                          random_initial_state=False,
                          tol=1e-6,
                          itertol=1e-5,
                          use_umfpack=True,
                          verbose=False):
    """
    Steady state for the evolution subject to the nonlinear Liouvillian
    (which depends on the density matrix).

    .. note:: Experimental. Not at all certain that the inverse power method
              works for state-dependent Liouvillian operators.
    """
    use_solver(assumeSortedIndices=True, useUmfpack=use_umfpack)
    if random_initial_state:
        rhoss = rand_dm(rho0.shape[0], 1.0, dims=rho0.dims)
    elif isket(rho0):
        rhoss = ket2dm(rho0)
    else:
        rhoss = Qobj(rho0)

    v = mat2vec(rhoss.full())

    n = prod(rhoss.shape)
    tr_vec = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
    tr_vec = tr_vec.reshape((1, n))

    it = 0
    while it < maxiter:

        L = L_func(rhoss, args)
        L = L.data.tocsc() - (tol**2) * sp.eye(n, n, format='csc')
        L.sort_indices()

        v = spsolve(L, v, use_umfpack=use_umfpack)
        v = v / la.norm(v, np.inf)

        data = v / sum(tr_vec.dot(v))
        data = reshape(data, (rhoss.shape[0], rhoss.shape[1])).T
        rhoss.data = sp.csr_matrix(data)

        it += 1

        if la.norm(L * v, np.inf) <= tol:
            break

    if it >= maxiter:
        raise ValueError('Failed to find steady state after ' + str(maxiter) +
                         ' iterations')

    rhoss = 0.5 * (rhoss + rhoss.dag())
    return rhoss.tidyup() if qset.auto_tidyup else rhoss
Exemplo n.º 2
0
def _steadystate_power(L,
                       maxiter=10,
                       tol=1e-6,
                       itertol=1e-5,
                       use_umfpack=True,
                       verbose=False):
    """
    Inverse power method for steady state solving.
    """
    if verbose:
        print('Starting iterative power method Solver...')
    use_solver(assumeSortedIndices=True, useUmfpack=use_umfpack)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
        rhoss.shape = [prod(rhoss.dims[0]), prod(rhoss.dims[1])]
    else:
        rhoss.dims = [L.dims[0], 1]
        rhoss.shape = [prod(rhoss.dims[0]), 1]
    n = prod(rhoss.shape)
    L = L.data.tocsc() - (tol**2) * sp.eye(n, n, format='csc')
    L.sort_indices()
    v = mat2vec(rand_dm(rhoss.shape[0], 0.5 / rhoss.shape[0] + 0.5).full())
    if verbose:
        start_time = time.time()
    it = 0
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        v = spsolve(L, v, use_umfpack=use_umfpack)
        v = v / la.norm(v, np.inf)
        it += 1
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' + str(maxiter) +
                        ' iterations')
    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True
    if verbose:
        print('Power solver time: ', time.time() - start_time)
    if qset.auto_tidyup:
        return rhoss.tidyup()
    else:
        return rhoss
Exemplo n.º 3
0
def steadystate_nonlinear(L_func, rho0, args={}, maxiter=10,
                          random_initial_state=False, tol=1e-6, itertol=1e-5,
                          use_umfpack=True, verbose=False):
    """
    Steady state for the evolution subject to the nonlinear Liouvillian
    (which depends on the density matrix).

    .. note:: Experimental. Not at all certain that the inverse power method
              works for state-dependent Liouvillian operators.
    """
    use_solver(assumeSortedIndices=True, useUmfpack=use_umfpack)
    if random_initial_state:
        rhoss = rand_dm(rho0.shape[0], 1.0, dims=rho0.dims)
    elif isket(rho0):
        rhoss = ket2dm(rho0)
    else:
        rhoss = Qobj(rho0)

    v = mat2vec(rhoss.full())

    n = prod(rhoss.shape)
    tr_vec = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
    tr_vec = tr_vec.reshape((1, n))

    it = 0
    while it < maxiter:

        L = L_func(rhoss, args)
        L = L.data.tocsc() - (tol ** 2) * sp.eye(n, n, format='csc')
        L.sort_indices()

        v = spsolve(L, v, use_umfpack=use_umfpack)
        v = v / la.norm(v, np.inf)

        data = v / sum(tr_vec.dot(v))
        data = reshape(data, (rhoss.shape[0], rhoss.shape[1])).T
        rhoss.data = sp.csr_matrix(data)

        it += 1

        if la.norm(L * v, np.inf) <= tol:
            break

    if it >= maxiter:
        raise ValueError('Failed to find steady state after ' +
                         str(maxiter) + ' iterations')

    rhoss = 0.5 * (rhoss + rhoss.dag())
    return rhoss.tidyup() if qset.auto_tidyup else rhoss
Exemplo n.º 4
0
def _steadystate_power(L, maxiter=10, tol=1e-6, itertol=1e-5,
                       verbose=False):
    """
    Inverse power method for steady state solving.
    """
    if verbose:
        print('Starting iterative power method Solver...')
    use_solver(assumeSortedIndices=True)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
        rhoss.shape = [prod(rhoss.dims[0]), prod(rhoss.dims[1])]
    else:
        rhoss.dims = [L.dims[0], 1]
        rhoss.shape = [prod(rhoss.dims[0]), 1]
    n = prod(rhoss.shape)
    L = L.data.tocsc() - (tol ** 2) * sp.eye(n, n, format='csc')
    L.sort_indices()
    v = mat2vec(rand_dm(rhoss.shape[0], 0.5 / rhoss.shape[0] + 0.5).full())
    if verbose:
        start_time = time.time()
    it = 0
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        v = spsolve(L, v)
        v = v / la.norm(v, np.inf)
        it += 1
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' +
                        str(maxiter) + ' iterations')
    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True
    if verbose:
        print('Power solver time: ', time.time() - start_time)
    if qset.auto_tidyup:
        return rhoss.tidyup()
    else:
        return rhoss
Exemplo n.º 5
0
def tensor(*args):
    """Calculates the tensor product of input operators.

    Parameters
    ----------
    args : array_like
        ``list`` or ``array`` of quantum objects for tensor product.

    Returns
    -------
    obj : qobj
        A composite quantum object.

    Examples
    --------
    >>> tensor([sigmax(), sigmax()]) # doctest: +SKIP
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = True
    Qobj data =
    [[ 0.+0.j  0.+0.j  0.+0.j  1.+0.j]
     [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j]
     [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j]
     [ 1.+0.j  0.+0.j  0.+0.j  0.+0.j]]
    """

    if not args:
        raise TypeError("Requires at least one input argument")

    if len(args) == 1 and isinstance(args[0], (list, np.ndarray)):
        # this is the case when tensor is called on the form:
        # tensor([q1, q2, q3, ...])
        qlist = args[0]

    elif len(args) == 1 and isinstance(args[0], Qobj):
        # tensor is called with a single Qobj as an argument, do nothing
        return args[0]

    else:
        # this is the case when tensor is called on the form:
        # tensor(q1, q2, q3, ...)
        qlist = args

    if not all([isinstance(q, Qobj) for q in qlist]):
        # raise error if one of the inputs is not a quantum object
        raise TypeError("One of inputs is not a quantum object")

    out = Qobj()

    if qlist[0].issuper:
        out.superrep = qlist[0].superrep
        if not all([q.superrep == out.superrep for q in qlist]):
            raise TypeError("In tensor products of superroperators, all must" +
                            "have the same representation")

    out.isherm = True
    for n, q in enumerate(qlist):
        if n == 0:
            out.data = q.data
            out.dims = q.dims
        else:
            out.data  = zcsr_kron(out.data, q.data)

            out.dims = [out.dims[0] + q.dims[0], out.dims[1] + q.dims[1]]

        out.isherm = out.isherm and q.isherm

    if not out.isherm:
        out._isherm = None

    return out.tidyup() if qutip.settings.auto_tidyup else out
Exemplo n.º 6
0
def tensor(*args):
    """Calculates the tensor product of input operators.

    Parameters
    ----------
    args : array_like
        ``list`` or ``array`` of quantum objects for tensor product.

    Returns
    --------
    obj : qobj
        A composite quantum object.

    Examples
    --------
    >>> tensor([sigmax(), sigmax()])
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = True
    Qobj data =
    [[ 0.+0.j  0.+0.j  0.+0.j  1.+0.j]
     [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j]
     [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j]
     [ 1.+0.j  0.+0.j  0.+0.j  0.+0.j]]

    """
    if not args:
        raise TypeError("Requires at least one input argument")
    num_args = len(args)
    step = 0
    isherm = True
    for n in range(num_args):
        if isinstance(args[n], Qobj):
            qos = args[n]
            if step == 0:
                dat = qos.data
                dim = qos.dims
                shp = qos.shape
                isherm = isherm and qos.isherm
                step = 1
            else:
                dat = sp.kron(dat, qos.data, format='csr')
                isherm = isherm and qos.isherm
                dim = [dim[0] + qos.dims[0],
                       dim[1] + qos.dims[1]]  # append dimensions of Qobjs
                shp = [dat.shape[0], dat.shape[1]]  # new shape of matrix

        elif isinstance(args[n], (list, ndarray)):
            qos = args[n]
            items = len(qos)  # number of inputs
            if not all([isinstance(k, Qobj) for k in qos]):
                # raise error if one of the inputs is not a quantum object
                raise TypeError("One of inputs is not a quantum object")
            if items == 1:  # if only one Qobj, do nothing
                if step == 0:
                    dat = qos[0].data
                    dim = qos[0].dims
                    shp = qos[0].shape
                    isherm = isherm and qos[0].isherm
                    step = 1
                else:
                    dat = sp.kron(dat, qos[0].data, format='csr')
                    isherm = isherm and qos[0].isherm
                    dim = [dim[0] + qos[0].dims[0],
                           dim[1] + qos[0].dims[1]]  # append dimensions of qos
                    shp = [dat.shape[0], dat.shape[1]]  # new shape of matrix
            elif items != 1:
                if step == 0:
                    dat = qos[0].data
                    dim = qos[0].dims
                    shp = qos[0].shape
                    step = 1
                    isherm = isherm and qos[0].isherm
                for k in range(items - 1):  # cycle over all items
                    dat = sp.kron(dat, qos[k + 1].data, format='csr')
                    isherm = isherm and qos[k + 1].isherm
                    dim = [
                        dim[0] + qos[k + 1].dims[0],
                        dim[1] + qos[k + 1].dims[1]
                    ]
                    shp = [dat.shape[0], dat.shape[1]]  # new shape of matrix
    out = Qobj()
    out.data = dat
    out.dims = dim
    out.shape = shp
    out.type = ischeck(out)
    out.isherm = isherm
    if qutip.settings.auto_tidyup:
        return out.tidyup()  # returns tidy Qobj
    else:
        return out
Exemplo n.º 7
0
def tensor(*args):
    """Calculates the tensor product of input operators.

    Parameters
    ----------
    args : array_like
        ``list`` or ``array`` of quantum objects for tensor product.

    Returns
    -------
    obj : qobj
        A composite quantum object.

    Examples
    --------
    >>> tensor([sigmax(), sigmax()])
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = True
    Qobj data =
    [[ 0.+0.j  0.+0.j  0.+0.j  1.+0.j]
     [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j]
     [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j]
     [ 1.+0.j  0.+0.j  0.+0.j  0.+0.j]]
    """

    if not args:
        raise TypeError("Requires at least one input argument")

    if len(args) == 1 and isinstance(args[0], (list, np.ndarray)):
        # this is the case when tensor is called on the form:
        # tensor([q1, q2, q3, ...])
        qlist = args[0]

    elif len(args) == 1 and isinstance(args[0], Qobj):
        # tensor is called with a single Qobj as an argument, do nothing
        return args[0]

    else:
        # this is the case when tensor is called on the form:
        # tensor(q1, q2, q3, ...)
        qlist = args

    if not all([isinstance(q, Qobj) for q in qlist]):
        # raise error if one of the inputs is not a quantum object
        raise TypeError("One of inputs is not a quantum object")

    out = Qobj()

    if qlist[0].issuper:
        out.superrep = qlist[0].superrep
        if not all([q.superrep == out.superrep for q in qlist]):
            raise TypeError("In tensor products of superroperators, all must" +
                            "have the same representation")

    out.isherm = True
    for n, q in enumerate(qlist):
        if n == 0:
            out.data = q.data
            out.dims = q.dims
        else:
            out.data = sp.kron(out.data, q.data, format='csr')
            out.dims = [out.dims[0] + q.dims[0], out.dims[1] + q.dims[1]]

        out.isherm = out.isherm and q.isherm

    if not out.isherm:
        out._isherm = None

    return out.tidyup() if qutip.settings.auto_tidyup else out
Exemplo n.º 8
0
def test_tidyup():
    small = Qobj([[1e-2, 0], [0, 1]])
    small.tidyup(1e-1)
    assert small.tr() == 1
Exemplo n.º 9
0
def tensor(*args):
    """Calculates the tensor product of input operators.

    Parameters
    ----------
    args : array_like
        ``list`` or ``array`` of quantum objects for tensor product.

    Returns
    --------
    obj : qobj
        A composite quantum object.

    Examples
    --------
    >>> tensor([sigmax(), sigmax()])
    Quantum object: dims = [[2, 2], [2, 2]], \
shape = [4, 4], type = oper, isHerm = True
    Qobj data =
    [[ 0.+0.j  0.+0.j  0.+0.j  1.+0.j]
     [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j]
     [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j]
     [ 1.+0.j  0.+0.j  0.+0.j  0.+0.j]]

    """
    if not args:
        raise TypeError("Requires at least one input argument")
    num_args = len(args)
    step = 0
    isherm = True
    for n in range(num_args):
        if isinstance(args[n], Qobj):
            qos = args[n]
            if step == 0:
                dat = qos.data
                dim = qos.dims
                shp = qos.shape
                isherm = isherm and qos.isherm
                step = 1
            else:
                dat = sp.kron(dat, qos.data, format='csr')
                isherm = isherm and qos.isherm
                dim = [dim[0] + qos.dims[0],
                       dim[1] + qos.dims[1]]  # append dimensions of Qobjs
                shp = [dat.shape[0], dat.shape[1]]  # new shape of matrix

        elif isinstance(args[n], (list, ndarray)):
            qos = args[n]
            items = len(qos)  # number of inputs
            if not all([isinstance(k, Qobj) for k in qos]):
                # raise error if one of the inputs is not a quantum object
                raise TypeError("One of inputs is not a quantum object")
            if items == 1:  # if only one Qobj, do nothing
                if step == 0:
                    dat = qos[0].data
                    dim = qos[0].dims
                    shp = qos[0].shape
                    isherm = isherm and qos[0].isherm
                    step = 1
                else:
                    dat = sp.kron(dat, qos[0].data, format='csr')
                    isherm = isherm and qos[0].isherm
                    dim = [dim[0] + qos[0].dims[0],
                           dim[1] + qos[0].dims[1]]  # append dimensions of qos
                    shp = [dat.shape[0], dat.shape[1]]  # new shape of matrix
            elif items != 1:
                if step == 0:
                    dat = qos[0].data
                    dim = qos[0].dims
                    shp = qos[0].shape
                    step = 1
                    isherm = isherm and qos[0].isherm
                for k in range(items - 1):  # cycle over all items
                    dat = sp.kron(dat, qos[k + 1].data, format='csr')
                    isherm = isherm and qos[k + 1].isherm
                    dim = [dim[0] + qos[k + 1].dims[0],
                           dim[1] + qos[k + 1].dims[1]]
                    shp = [dat.shape[0], dat.shape[1]]  # new shape of matrix
    out = Qobj()
    out.data = dat
    out.dims = dim
    out.shape = shp
    out.type = ischeck(out)
    out.isherm = isherm
    if qutip.settings.auto_tidyup:
        return out.tidyup()  # returns tidy Qobj
    else:
        return out