Exemplo n.º 1
0
def floquet_modes_table(f_modes_0, f_energies, tlist, H, T, args=None):
    """
    Pre-calculate the Floquet modes for a range of times spanning the floquet
    period. Can later be used as a table to look up the floquet modes for
    any time.

    Parameters
    ----------

    f_modes_0 : list of :class:`qutip.qobj` (kets)
        Floquet modes at :math:`t`

    f_energies : list
        Floquet energies.

    tlist : array
        The list of times at which to evaluate the floquet modes.

    H : :class:`qutip.qobj`
        system Hamiltonian, time-dependent with period `T`

    T : float
        The period of the time-dependence of the hamiltonian.

    args : dictionary
        dictionary with variables required to evaluate H

    Returns
    -------

    output : nested list

        A nested list of Floquet modes as kets for each time in `tlist`

    """
    # truncate tlist to the driving period
    tlist_period = tlist[np.where(tlist <= T)]

    f_modes_table_t = [[] for t in tlist_period]

    opt = Options()
    opt.rhs_reuse = True
    rhs_clear()

    for n, f_mode in enumerate(f_modes_0):
        output = sesolve(H, f_mode, tlist_period, [], args, opt)
        for t_idx, f_state_t in enumerate(output.states):
            f_modes_table_t[t_idx].append(
                f_state_t * exp(1j * f_energies[n] * tlist_period[t_idx]))

    return f_modes_table_t
Exemplo n.º 2
0
def _correlation_me_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op,
                       args={}, options=Options()):
    """
    Internal function for calculating the three-operator two-time
    correlation function:
    <A(t)B(t+tau)C(t)>
    using a master equation solver.
    """

    # the solvers only work for positive time differences and the correlators
    # require positive tau
    if state0 is None:
        rho0 = steadystate(H, c_ops)
        tlist = [0]
    elif isket(state0):
        rho0 = ket2dm(state0)
    else:
        rho0 = state0

    if debug:
        print(inspect.stack()[0][3])

    rho_t = mesolve(H, rho0, tlist, c_ops, [],
                    args=args, options=options).states
    corr_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)
    H_shifted, c_ops_shifted, _args = _transform_L_t_shift(H, c_ops, args)
    if config.tdname:
        _cython_build_cleanup(config.tdname)
    rhs_clear()

    for t_idx, rho in enumerate(rho_t):
        if not isinstance(H, Qobj):
            _args["_t0"] = tlist[t_idx]

        corr_mat[t_idx, :] = mesolve(
            H_shifted, c_op * rho * a_op, taulist, c_ops_shifted,
            [b_op], args=_args, options=options
        ).expect[0]

        if t_idx == 1:
            options.rhs_reuse = True

    if config.tdname:
        _cython_build_cleanup(config.tdname)
    rhs_clear()

    return corr_mat
Exemplo n.º 3
0
def _correlation_me_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op,
                       args={}, options=Options()):
    """
    Internal function for calculating the three-operator two-time
    correlation function:
    <A(t)B(t+tau)C(t)>
    using a master equation solver.
    """

    # the solvers only work for positive time differences and the correlators
    # require positive tau
    if state0 is None:
        rho0 = steadystate(H, c_ops)
        tlist = [0]
    elif isket(state0):
        rho0 = ket2dm(state0)
    else:
        rho0 = state0

    if debug:
        print(inspect.stack()[0][3])

    rho_t = mesolve(H, rho0, tlist, c_ops, [],
                    args=args, options=options).states
    corr_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)
    H_shifted, c_ops_shifted, _args = _transform_L_t_shift_new(H, c_ops, args)
    if config.tdname:
        _cython_build_cleanup(config.tdname)
    rhs_clear()

    for t_idx, rho in enumerate(rho_t):
        if not isinstance(H, Qobj):
            _args["_t0"] = tlist[t_idx]

        corr_mat[t_idx, :] = mesolve(
            H_shifted, c_op * rho * a_op, taulist, c_ops_shifted,
            [b_op], args=_args, options=options
        ).expect[0]

        if t_idx == 1:
            options.rhs_reuse = True

    if config.tdname:
        _cython_build_cleanup(config.tdname)
    rhs_clear()

    return corr_mat
Exemplo n.º 4
0
def _correlation_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op,
                    solver="me", args={}, options=Options()):
    """
    Internal function for calling solvers in order to calculate the
    three-operator two-time correlation function:
    <A(t)B(t+tau)C(t)>
    """

    # Note: the current form of the correlator is sufficient for all possible
    # two-time correlations (incuding those with 2ops vs 3). Ex: to compute a
    # correlation of the form <A(t+tau)B(t)>: a_op = identity, b_op = A,
    # and c_op = B.

    if debug:
        print(inspect.stack()[0][3])

    if min(tlist) != 0:
        raise TypeError("tlist must be positive and contain the element 0.")
    if min(taulist) != 0:
        raise TypeError("taulist must be positive and contain the element 0.")

    if config.tdname:
        _cython_build_cleanup(config.tdname)
    rhs_clear()
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    if solver == "me":
        return _correlation_me_2t(H, state0, tlist, taulist,
                                  c_ops, a_op, b_op, c_op,
                                  args=args, options=options)
    elif solver == "mc":
        return _correlation_mc_2t(H, state0, tlist, taulist,
                                  c_ops, a_op, b_op, c_op,
                                  args=args, options=options)
    elif solver == "es":
        return _correlation_es_2t(H, state0, tlist, taulist,
                                  c_ops, a_op, b_op, c_op)
    else:
        raise ValueError("Unrecognized choice of solver" +
                         "%s (use me, mc, or es)." % solver)
Exemplo n.º 5
0
def _correlation_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op,
                    solver="me", args={}, options=Options()):
    """
    Internal function for calling solvers in order to calculate the
    three-operator two-time correlation function:
    <A(t)B(t+tau)C(t)>
    """

    # Note: the current form of the correlator is sufficient for all possible
    # two-time correlations (incuding those with 2ops vs 3). Ex: to compute a
    # correlation of the form <A(t+tau)B(t)>: a_op = identity, b_op = A,
    # and c_op = B.

    if debug:
        print(inspect.stack()[0][3])

    if min(tlist) != 0:
        raise TypeError("tlist must be positive and contain the element 0.")
    if min(taulist) != 0:
        raise TypeError("taulist must be positive and contain the element 0.")

    if config.tdname:
        _cython_build_cleanup(config.tdname)
    rhs_clear()
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    if solver == "me":
        return _correlation_me_2t(H, state0, tlist, taulist,
                                  c_ops, a_op, b_op, c_op,
                                  args=args, options=options)
    elif solver == "mc":
        return _correlation_mc_2t(H, state0, tlist, taulist,
                                  c_ops, a_op, b_op, c_op,
                                  args=args, options=options)
    elif solver == "es":
        return _correlation_es_2t(H, state0, tlist, taulist,
                                  c_ops, a_op, b_op, c_op)
    else:
        raise ValueError("Unrecognized choice of solver" +
                         "%s (use me, mc, or es)." % solver)
Exemplo n.º 6
0
def propagator(H, t, c_op_list, args=None, options=None, sparse=False):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    if isinstance(H, (types.FunctionType, types.BuiltinFunctionType,
                      functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        for n in range(0, N):
            psi0 = basis(N, n)
            output = sesolve(H, psi0, tlist, [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = output.states[k].full().T

        # todo: evolving a batch of wave functions:
        # psi_0_list = [basis(N, n) for n in range(N)]
        # psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], args, options)
        # for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = H0.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        for n in range(0, N):
            psi0 = basis(N, n)
            rho0 = Qobj(vec2mat(psi0.full()))
            output = mesolve(H, rho0, tlist, [], [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = mat2vec(output.states[k].full()).T

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        if sparse:
            for n in range(N * N):
                psi0 = basis(N * N, n)
                psi0.dims = [dims[0], 1]
                rho0 = vector_to_operator(psi0)
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = operator_to_vector(
                        output.states[k]).full(squeeze=True)

        else:
            for n in range(N * N):
                psi0 = basis(N * N, n)
                rho0 = Qobj(vec2mat(psi0.full()))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))]
Exemplo n.º 7
0
def propagator(H,
               t,
               c_op_list,
               args=None,
               options=None,
               sparse=False,
               progress_bar=None):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    if isinstance(
            H,
        (types.FunctionType, types.BuiltinFunctionType, functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        progress_bar.start(N)
        for n in range(0, N):
            progress_bar.update(n)
            psi0 = basis(N, n)
            output = sesolve(H, psi0, tlist, [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = output.states[k].full().T
        progress_bar.finished()

        # todo: evolving a batch of wave functions:
        # psi_0_list = [basis(N, n) for n in range(N)]
        # psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], args, options)
        # for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = H0.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        progress_bar.start(N)
        for n in range(0, N):
            progress_bar.update(n)
            psi0 = basis(N, n)
            rho0 = Qobj(vec2mat(psi0.full()))
            output = mesolve(H, rho0, tlist, [], [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = mat2vec(output.states[k].full()).T
        progress_bar.finished()

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        if sparse:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                psi0 = basis(N * N, n)
                psi0.dims = [dims[0], 1]
                rho0 = vector_to_operator(psi0)
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = operator_to_vector(
                        output.states[k]).full(squeeze=True)
            progress_bar.finished()

        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                psi0 = basis(N * N, n)
                rho0 = Qobj(vec2mat(psi0.full()))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))]
Exemplo n.º 8
0
def propagator(H, t, c_op_list, args=None, options=None):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Odeoptions`
        with options for the ODE solver.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """

    if options is None:
        options = Odeoptions()
        options.rhs_reuse = True
        rhs_clear()
    elif options.rhs_reuse:
        msg = ("propagator is using previously defined rhs " +
               "function (options.rhs_reuse = True)")
        warnings.warn(msg)

    tlist = [0, t] if isinstance(t, (int, float, np.int64, np.float64)) else t

    if len(c_op_list) == 0:
        # calculate propagator for the wave function

        if isinstance(H, types.FunctionType):
            H0 = H(0.0, args)
            N = H0.shape[0]
            dims = H0.dims
        elif isinstance(H, list):
            H0 = H[0][0] if isinstance(H[0], list) else H[0]
            N = H0.shape[0]
            dims = H0.dims
        else:
            N = H.shape[0]
            dims = H.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        for n in range(0, N):
            psi0 = basis(N, n)
            output = sesolve(H, psi0, tlist, [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = output.states[k].full().T

        # todo: evolving a batch of wave functions:
        # psi_0_list = [basis(N, n) for n in range(N)]
        # psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], args, options)
        # for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        if isinstance(H, types.FunctionType):
            H0 = H(0.0, args)
            N = H0.shape[0]
            dims = [H0.dims, H0.dims]
        elif isinstance(H, list):
            H0 = H[0][0] if isinstance(H[0], list) else H[0]
            N = H0.shape[0]
            dims = [H0.dims, H0.dims]
        else:
            N = H.shape[0]
            dims = [H.dims, H.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        for n in range(0, N * N):
            psi0 = basis(N * N, n)
            rho0 = Qobj(vec2mat(psi0.full()))
            output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = mat2vec(output.states[k].full()).T

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))]
Exemplo n.º 9
0
def propagator(H, t, c_op_list=[], args={}, options=None,
               unitary_mode='batch', parallel=False, 
               progress_bar=None, **kwargs):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    unitary_mode = str ('batch', 'single')
        Solve all basis vectors simulaneously ('batch') or individually 
        ('single').
    
    parallel : bool {False, True}
        Run the propagator in parallel mode. This will override the 
        unitary_mode settings if set to True.
    
    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']
    
    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    td_type = _td_format_check(H, c_op_list, solver='me')
        
    if isinstance(H, (types.FunctionType, types.BuiltinFunctionType,
                      functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H
    
    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        
        if parallel:
            unitary_mode = 'single'
            u = np.zeros([N, N, len(tlist)], dtype=complex)
            output = parallel_map(_parallel_sesolve,range(N),
                    task_args=(N,H, tlist,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T 
        else:
            if unitary_mode == 'single':
                u = np.zeros([N, N, len(tlist)], dtype=complex)
                progress_bar.start(N)
                for n in range(0, N):
                    progress_bar.update(n)
                    psi0 = basis(N, n)
                    output = sesolve(H, psi0, tlist, [], args, options, _safe_mode=False) 
                    for k, t in enumerate(tlist):
                        u[:, n, k] = output.states[k].full().T
                    progress_bar.finished() 

            elif unitary_mode =='batch':
                u = np.zeros(len(tlist), dtype=object)
                _rows = np.array([(N+1)*m for m in range(N)])
                _cols = np.zeros_like(_rows)
                _data = np.ones_like(_rows,dtype=complex)
                psi0 = Qobj(sp.coo_matrix((_data,(_rows,_cols))).tocsr())
                if td_type[1] > 0 or td_type[2] > 0:
                    H2 = []
                    for k in range(len(H)):
                        if isinstance(H[k], list):
                            H2.append([tensor(qeye(N), H[k][0]), H[k][1]])
                        else:
                            H2.append(tensor(qeye(N), H[k]))
                else:
                    H2 = tensor(qeye(N), H)
                output = sesolve(H2, psi0, tlist, [] , args = args, _safe_mode=False, 
                             options=Options(normalize_output=False))
                for k, t in enumerate(tlist):
                    u[k] = sp_reshape(output.states[k].data, (N, N))
                    unit_row_norm(u[k].data, u[k].indptr, u[k].shape[0])
                    u[k] = u[k].T.tocsr()
            else:
                raise Exception('Invalid unitary mode.')
                        

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims
        
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(sqrt_N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(sqrt_N,sqrt_N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(sqrt_N,sqrt_N), dtype=complex))
                output = mesolve(H, rho0, tlist, [], [], args, options, _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)
        
        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(N,N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(N,N), dtype=complex))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options, _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        if unitary_mode == 'batch':
            return Qobj(u[-1], dims=dims)
        else:
            return Qobj(u[:, :, 1], dims=dims)
    else:
        if unitary_mode == 'batch':
            return np.array([Qobj(u[k], dims=dims) for k in range(len(tlist))], dtype=object)
        else:
            return np.array([Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))], dtype=object)
Exemplo n.º 10
0
def propagator(H,
               t,
               c_op_list=[],
               args={},
               options=None,
               unitary_mode='batch',
               parallel=False,
               progress_bar=None,
               _safe_mode=True,
               **kwargs):
    r"""
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\rho_{\mathrm vec}(t) = U(t) \rho_{\mathrm vec}(0)`
    where :math:`\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    unitary_mode = str ('batch', 'single')
        Solve all basis vectors simulaneously ('batch') or individually
        ('single').

    parallel : bool {False, True}
        Run the propagator in parallel mode. This will override the
        unitary_mode settings if set to True.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    if _safe_mode:
        _solver_safety_check(H, None, c_ops=c_op_list, e_ops=[], args=args)

    td_type = _td_format_check(H, c_op_list, solver='me')

    if isinstance(
            H,
        (types.FunctionType, types.BuiltinFunctionType, functools.partial)):
        H0 = H(0.0, args)
        if unitary_mode == 'batch':
            # batch don't work with function Hamiltonian
            unitary_mode = 'single'
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims

        if parallel:
            unitary_mode = 'single'
            u = np.zeros([N, N, len(tlist)], dtype=complex)
            output = parallel_map(_parallel_sesolve,
                                  range(N),
                                  task_args=(N, H, tlist, args, options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T
        else:
            if unitary_mode == 'single':
                output = sesolve(H,
                                 qeye(dims[0]),
                                 tlist, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                if len(tlist) == 2:
                    return output.states[-1]
                else:
                    return output.states

            elif unitary_mode == 'batch':
                u = np.zeros(len(tlist), dtype=object)
                _rows = np.array([(N + 1) * m for m in range(N)])
                _cols = np.zeros_like(_rows)
                _data = np.ones_like(_rows, dtype=complex)
                psi0 = Qobj(sp.coo_matrix((_data, (_rows, _cols))).tocsr())
                if td_type[1] > 0 or td_type[2] > 0:
                    H2 = []
                    for k in range(len(H)):
                        if isinstance(H[k], list):
                            H2.append([tensor(qeye(N), H[k][0]), H[k][1]])
                        else:
                            H2.append(tensor(qeye(N), H[k]))
                else:
                    H2 = tensor(qeye(N), H)
                options.normalize_output = False
                output = sesolve(H2,
                                 psi0,
                                 tlist, [],
                                 args=args,
                                 options=options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[k] = sp_reshape(output.states[k].data, (N, N))
                    unit_row_norm(u[k].data, u[k].indptr, u[k].shape[0])
                    u[k] = u[k].T.tocsr()

            else:
                raise Exception('Invalid unitary mode.')

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(sqrt_N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            rho0 = qeye(N, N)
            rho0.dims = [[sqrt_N, sqrt_N], [sqrt_N, sqrt_N]]
            output = mesolve(H,
                             psi0,
                             tlist, [],
                             args,
                             options,
                             _safe_mode=False)
            if len(tlist) == 2:
                return output.states[-1]
            else:
                return output.states

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n, (N, N))
                rho0 = Qobj(
                    sp.csr_matrix(([1], ([row_idx], [col_idx])),
                                  shape=(N, N),
                                  dtype=complex))
                output = mesolve(H,
                                 rho0,
                                 tlist,
                                 c_op_list, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        if unitary_mode == 'batch':
            return Qobj(u[-1], dims=dims)
        else:
            return Qobj(u[:, :, 1], dims=dims)
    else:
        if unitary_mode == 'batch':
            return np.array([Qobj(u[k], dims=dims) for k in range(len(tlist))],
                            dtype=object)
        else:
            return np.array(
                [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))],
                dtype=object)
Exemplo n.º 11
0
def propagator(H, t, c_op_list=[], args={}, options=None,
               parallel=False, progress_bar=None, **kwargs):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    parallel : bool {False, True}
        Run the propagator in parallel mode.
    
    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']
    
    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    td_type = _td_format_check(H, c_op_list, solver='me')[2]
    if td_type > 0:
        rhs_generate(H, c_op_list, args=args, options=options)
        
    if isinstance(H, (types.FunctionType, types.BuiltinFunctionType,
                      functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        u = np.zeros([N, N, len(tlist)], dtype=complex)
        
        if parallel:
            output = parallel_map(_parallel_sesolve,range(N),
                    task_args=(N,H,tlist,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T 
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                psi0 = basis(N, n)
                output = sesolve(H, psi0, tlist, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = output.states[k].full().T
            progress_bar.finished()

        # todo: evolving a batch of wave functions:
        # psi_0_list = [basis(N, n) for n in range(N)]
        # psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], args, options)
        # for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims
        
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(sqrt_N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(sqrt_N,sqrt_N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(sqrt_N,sqrt_N), dtype=complex))
                output = mesolve(H, rho0, tlist, [], [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)
        
        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(N,N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(N,N), dtype=complex))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return np.array([Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))], dtype=object)
Exemplo n.º 12
0
def _correlation_mc_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op,
                       args={}, options=Options()):
    """
    Internal function for calculating the three-operator two-time
    correlation function:
    <A(t)B(t+tau)C(t)>
    using a Monte Carlo solver.
    """

    if not c_ops:
        raise TypeError("If no collapse operators are required, use the `me`" +
                        "or `es` solvers")

    # the solvers only work for positive time differences and the correlators
    # require positive tau
    if state0 is None:
        raise NotImplementedError("steady state not implemented for " +
                                  "mc solver, please use `es` or `me`")
    elif not isket(state0):
        raise TypeError("state0 must be a state vector.")
    psi0 = state0

    if debug:
        print(inspect.stack()[0][3])

    psi_t_mat = mcsolve(
        H, psi0, tlist, c_ops, [],
        args=args, ntraj=options.ntraj[0], options=options, progress_bar=None
    ).states

    corr_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)
    H_shifted, c_ops_shifted, _args = _transform_L_t_shift(H, c_ops, args)
    rhs_clear()

    # calculation of <A(t)B(t+tau)C(t)> from only knowledge of psi0 requires
    # averaging over both t and tau
    for t_idx in range(np.size(tlist)):
        if not isinstance(H, Qobj):
            _args["_t0"] = tlist[t_idx]

        for trial_idx in range(options.ntraj[0]):
            if isinstance(a_op, Qobj) and isinstance(c_op, Qobj):
                if a_op.dag() == c_op:
                    # A shortcut here, requires only 1/4 the trials
                    chi_0 = (options.mc_corr_eps + c_op) * \
                        psi_t_mat[trial_idx, t_idx]

                    # evolve these states and calculate expectation value of B
                    c_tau = chi_0.norm()**2 * mcsolve(
                        H_shifted, chi_0/chi_0.norm(), taulist, c_ops_shifted,
                        [b_op],
                        args=_args, ntraj=options.ntraj[1], options=options,
                        progress_bar=None
                    ).expect[0]

                    # final correlation vector computed by combining the
                    # averages
                    corr_mat[t_idx, :] += c_tau/options.ntraj[1]
            else:
                # otherwise, need four trial wavefunctions
                # (Ad+C)*psi_t, (Ad+iC)*psi_t, (Ad-C)*psi_t, (Ad-iC)*psi_t
                if isinstance(a_op, Qobj):
                    a_op_dag = a_op.dag()
                else:
                    # assume this is a number, ex. i.e. a_op = 1
                    # if this is not correct, the over-loaded addition
                    # operation will raise errors
                    a_op_dag = a_op
                chi_0 = [(options.mc_corr_eps + a_op_dag +
                          np.exp(1j*x*np.pi/2)*c_op) *
                         psi_t_mat[trial_idx, t_idx]
                         for x in range(4)]

                # evolve these states and calculate expectation value of B
                c_tau = [
                    chi.norm()**2 * mcsolve(
                        H_shifted, chi/chi.norm(), taulist, c_ops_shifted,
                        [b_op],
                        args=_args, ntraj=options.ntraj[1], options=options,
                        progress_bar=None
                    ).expect[0]
                    for chi in chi_0
                ]

                # final correlation vector computed by combining the averages
                corr_mat_add = np.asarray(
                    1.0 / (4*options.ntraj[0]) *
                    (c_tau[0] - c_tau[2] - 1j*c_tau[1] + 1j*c_tau[3]),
                    dtype=corr_mat.dtype
                )
                corr_mat[t_idx, :] += corr_mat_add
                    
        if t_idx == 1:
            options.rhs_reuse = True

    rhs_clear()

    return corr_mat
Exemplo n.º 13
0
def propagator(H,
               t,
               c_op_list=[],
               args={},
               options=None,
               parallel=False,
               progress_bar=None,
               **kwargs):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    parallel : bool {False, True}
        Run the propagator in parallel mode.
    
    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    td_type = _td_format_check(H, c_op_list, solver='me')[2]
    if td_type > 0:
        rhs_generate(H, c_op_list, args=args, options=options)

    if isinstance(
            H,
        (types.FunctionType, types.BuiltinFunctionType, functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_sesolve,
                                  range(N),
                                  task_args=(N, H, tlist, args, options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                psi0 = basis(N, n)
                output = sesolve(H,
                                 psi0,
                                 tlist, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = output.states[k].full().T
            progress_bar.finished()

        # todo: evolving a batch of wave functions:
        # psi_0_list = [basis(N, n) for n in range(N)]
        # psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], args, options)
        # for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(sqrt_N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n, (sqrt_N, sqrt_N))
                rho0 = Qobj(
                    sp.csr_matrix(([1], ([row_idx], [col_idx])),
                                  shape=(sqrt_N, sqrt_N),
                                  dtype=complex))
                output = mesolve(H,
                                 rho0,
                                 tlist, [], [],
                                 args,
                                 options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n, (N, N))
                rho0 = Qobj(
                    sp.csr_matrix(([1], ([row_idx], [col_idx])),
                                  shape=(N, N),
                                  dtype=complex))
                output = mesolve(H,
                                 rho0,
                                 tlist,
                                 c_op_list, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return np.array(
            [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))],
            dtype=object)