Exemplo n.º 1
0
def main():
    # GENERAL SETTINGS
    num_system_qubits = 3
    num_ancillae = 1
    num_qubits = num_system_qubits + num_ancillae
    n_attempts = 20
    logging.info('We are going for 20 attempts.')
    # SET TARGET GATE AND INTERACTIONS
    target_gate = qutip.fredkin()
    # interactions = 'all'
    fredkin_model = make_XX_model(num_qubits)
    # HYPERPARAMETERS
    training_dataset_size = 200
    test_dataset_size = 100
    n_epochs = 300
    batch_size = 2
    sgd_method = 'adadelta'
    learning_rate = 1
    decay_rate = 0.1
    initial_values = 'random'
    logging.info('Random initial values')
    # TAKE CARE NOT TO OVERWRITE PREVIOUSLY SAVED FILES
    prefix = os.path.join(OUTPUT_DIR, OUTPUT_FILES_NAME)
    ext = '.pickle'
    files = glob.glob(prefix + '*')
    pre_idx = 0
    if files:
        pre_idx = max([int(f[len(prefix):-len(ext)]) for f in files])
    # STARTING MESSAGES
    for idx in range(n_attempts):
        logging.info('Starting training no.{}'.format(str(idx + 1)))

        model = qn.model.QubitNetworkGateModel(
            sympy_expr=fredkin_model,
            initial_values=initial_values,
            num_system_qubits=num_system_qubits)
        optimizer = qn.Optimizer.Optimizer(
            net=model,
            learning_rate=learning_rate,
            decay_rate=decay_rate,
            n_epochs=n_epochs,
            batch_size=batch_size,
            target_gate=target_gate,
            training_dataset_size=training_dataset_size,
            test_dataset_size=test_dataset_size,
            sgd_method=sgd_method,
            headless=True)

        optimizer.run()

        newpath = os.path.join(
            OUTPUT_DIR, OUTPUT_FILES_NAME + str(1 + pre_idx + idx) + '.pickle')

        optimizer.save_results(newpath)
        logging.info('Fidelity obtained: {}'.format(model.average_fidelity()))
def main():
    # GENERAL SETTINGS
    num_system_qubits = 3
    num_ancillae = 0
    num_qubits = num_system_qubits + num_ancillae
    # the attempts will be equally (when possible) distributed among these
    # initial values. Each initial value will be used the same amount of
    # times.
    attempted_initvalues = [0, 1, 2, 3, 4]
    num_attempts_per_initvalue = 10
    num_attempts = num_attempts_per_initvalue * len(attempted_initvalues)
    logging.info('We are going for a total of {}'
                 'attempts.'.format(num_attempts))
    logging.info('The following initial values will be used:'
                 '{}.'.format(attempted_initvalues))
    # SET TARGET GATE AND INTERACTIONS
    target_gate = qutip.fredkin()
    # interactions = 'all'
    # fredkin_model = make_reduced_fredkin_model(num_qubits)
    # HYPERPARAMETERS
    training_dataset_size = 200
    test_dataset_size = 100
    n_epochs = 100
    batch_size = 2
    sgd_method = 'momentum'
    learning_rate = 1
    decay_rate = 0.1
    # TAKE CARE NOT TO OVERWRITE PREVIOUSLY SAVED FILES
    prefix = os.path.join(OUTPUT_DIR, OUTPUT_FILES_NAME)
    ext = '.pickle'
    files = glob.glob(prefix + '*')
    pre_idx = 0
    if files:
        pre_idx = max([int(f[len(prefix):-len(ext)]) for f in files])
    # STARTING MESSAGES
    for idx in range(num_attempts):
        initial_values = attempted_initvalues[idx //
                                              num_attempts_per_initvalue]
        fredkin_model = make_reduced_fredkin_model(num_qubits)
        logging.info('Starting training no.{}'.format(str(idx + 1)))
        logging.info('Initial values: {}.'.format(initial_values))

        model = qn.model.QubitNetworkGateModel(
            sympy_expr=fredkin_model,
            initial_values=initial_values,
            num_system_qubits=num_system_qubits)
        optimizer = qn.Optimizer.Optimizer(
            net=model,
            learning_rate=learning_rate,
            decay_rate=decay_rate,
            n_epochs=n_epochs,
            batch_size=batch_size,
            target_gate=target_gate,
            training_dataset_size=training_dataset_size,
            test_dataset_size=test_dataset_size,
            sgd_method=sgd_method,
            headless=True)

        optimizer.run()

        newpath = os.path.join(
            OUTPUT_DIR, OUTPUT_FILES_NAME + str(1 + pre_idx + idx) + '.pickle')

        optimizer.save_results(newpath)
        logging.info('Fidelity obtained: {}'.format(model.average_fidelity()))
Exemplo n.º 3
0
import qutip as qt
import numpy as np
"""
	            fredkin	hadamard
ancilla---------O---------H------------Measure
     f1---------X----------------------
     f2---------X----------------------
"""

up = qt.qstate('u')  #qstate down is (1,0), qstate up is (0,1)
down = qt.qstate('d')
ancilla = 1 / np.sqrt(2) * (up + down)
hadamard = qt.tensor(qt.snot(), qt.qeye(2), qt.qeye(2))
fredkin = qt.fredkin()  #fredkin swapes f1 and f2 if ancilla = 1

#------------------------------------------------------------------------
#Define Input
f1 = 1 / np.sqrt(2) * (up + down)
f2 = up
#------------------------------------------------------------------------

psi0 = qt.tensor(ancilla, f1, f2)

output = hadamard * fredkin * psi0

measure = qt.tensor(down, f1,
                    f2).dag() * output  #if f1 = f2 the output is (down,f1,f2)
#therefore measure is 1 if f1 = f2
#measure is 0.5 if f1, f2 are orthogonal

print(measure)
def make_reduced_fredkin_model(num_qubits):
    import qubit_network.analytical_conditions as ac

    fredkin_diagonal = ac.commuting_generator(qutip.fredkin(),
                                              interactions='diagonal')
    return fredkin_diagonal
Exemplo n.º 5
0
    return qt.phasegate(angle)

# 2 qubit gates
CNOT = qt.cnot()
CZ = qt.csign()
Berkeley = qt.berkeley()
SWAP = qt.swap()
iSWAP = qt.iswap()
SQSWAP = qt.sqrtswap()
SQiSWAP = qt.sqrtiswap()

def aSWAP(angle):
    return qt.swapalpha(angle)

# 3 qubit gates
Fredkin = qt.fredkin()
Toffoli = qt.toffoli()



# Get unitary axis and angle
def bloch(U):
    if isinstance(U, qt.Qobj):
        U = U.full()
    angle = np.real(2 * np.arccos(np.trace(U) / 2))
    sin = np.sin(angle / 2)
    eps = 1e-10
    if sin < eps:
        axis = [0, 0, 1]
    else:
        nz = np.imag(U[1, 1] - U[0, 0]) / (2 * sin)