Exemplo n.º 1
0
def L_left_lindblad(H, PARAMS):
    I = qeye(PARAMS['N'])
    d_h = tensor(PARAMS['A_L'], I)
    J_leads = J_Lorentzian
    Lambda_up = lambda x :  Lamdba_complex_rate(x, J_leads, PARAMS['mu_L'], PARAMS['T_L'], PARAMS['Gamma_L'], 
                                                    PARAMS['delta_L'], PARAMS['Omega_L'], type='p', real_only=True)
    Lambda_down = lambda x :  Lamdba_complex_rate(x, J_leads, PARAMS['mu_L'], PARAMS['T_L'], PARAMS['Gamma_L'], 
                                                    PARAMS['delta_L'], PARAMS['Omega_L'], type='m', real_only=True)
    energies, states = H.eigenstates()
    
    L=0
    for i in range(len(energies)):
        for j in range(len(energies)):
            eta_ij = energies[i] - energies[j]
            if (abs(eta_ij)>0):# take limit of rates going to zero
                d_h_ij = d_h.matrix_element(states[i].dag(), states[j])
                d_h_ij_sq = d_h_ij*d_h_ij.conjugate() # real by construction
                if (abs(d_h_ij_sq)>0):  # No need to do anything if the matrix element is zero
                    
                    IJ = states[i]*states[j].dag()
                    JI = states[j]*states[i].dag()
                    JJ = states[j]*states[j].dag()
                    II = states[i]*states[i].dag()
                    rate_up = Lambda_up(-eta_ij) # evaluated at positive freq diffs
                    rate_down = Lambda_down(-eta_ij)
                    print(rate_down)
                    T1 = rate_up*spre(II)+rate_down*spre(JJ)
                    T2 = rate_up.conjugate()*spost(II)+rate_down.conjugate()*spost(JJ)
                    T3 = (rate_up*sprepost(JI, IJ)+rate_down*sprepost(IJ,JI))
                    L += d_h_ij_sq*(0.5*(T1 + T2) - T3)
    return -L
Exemplo n.º 2
0
def L_nonsecular_old(H_vib, A, eps, Gamma, T, J, time_units='cm', silent=False):
    #Construct non-secular liouvillian
    ti = time.time()
    d = H_vib.shape[0]
    evals, evecs = H_vib.eigenstates()
    X1, X2, X3, X4 = 0, 0, 0, 0
    for i in range(int(d)):
        for j in range(int(d)):
            eps_ij = abs(evals[i]-evals[j])
            A_ij = A.matrix_element(evecs[i].dag(), evecs[j])
            A_ji = (A.dag()).matrix_element(evecs[j].dag(), evecs[i])
            Occ = Occupation(eps_ij, T, time_units)
            IJ = evecs[i]*evecs[j].dag()
            JI = evecs[j]*evecs[i].dag()
            # 0.5*np.pi*alpha*(N+1)
            if abs(A_ij)>0 or abs(A_ji)>0:
                r_up = 2*np.pi*J(eps_ij, Gamma, eps)*Occ
                r_down = 2*np.pi*J(eps_ij, Gamma, eps)*(Occ+1)
                X3+= r_down*A_ij*IJ
                X4+= r_up*A_ij*IJ
                X1+= r_up*A_ji*JI
                X2+= r_down*A_ji*JI

    L = spre(A*X1) -sprepost(X1,A)+spost(X2*A)-sprepost(A,X2)
    L+= spre(A.dag()*X3)-sprepost(X3, A.dag())+spost(X4*A.dag())-sprepost(A.dag(), X4)
    if not silent:
        print(("It took ", time.time()-ti, " seconds to build the Non-secular RWA Liouvillian"))
    return -0.5*L
Exemplo n.º 3
0
def L_full_secular(H_vib, A, eps, Gamma, T, J, time_units='cm', silent=False):
    '''
    Initially assuming that the vibronic eigenstructure has no
    degeneracy and the secular approximation has been made
    '''
    ti = time.time()
    d = H_vib.shape[0]
    L = 0
    eVals, eVecs = H_vib.eigenstates()
    A_dag = A.dag()
    terms = 0
    for l in range(int(d)):
        for m in range(int(d)):
            for p in range(int(d)):
                for q in range(int(d)):
                    secular_freq = (eVals[l] - eVals[m]) - (eVals[p] -
                                                            eVals[q])
                    if abs(secular_freq) < 1E-10:
                        terms += 1
                        A_lm = A.matrix_element(eVecs[l].dag(), eVecs[m])
                        A_lm_star = A_dag.matrix_element(
                            eVecs[m].dag(), eVecs[l])
                        A_pq = A.matrix_element(eVecs[p].dag(), eVecs[q])
                        A_pq_star = A_dag.matrix_element(
                            eVecs[q].dag(), eVecs[p])
                        coeff_1 = A_lm * A_pq_star
                        coeff_2 = A_lm_star * A_pq
                        eps_pq = abs(eVals[p] - eVals[q])
                        Occ = Occupation(eps_pq, T, time_units)
                        r_up = np.pi * J(eps_pq, Gamma, eps) * Occ
                        r_down = np.pi * J(eps_pq, Gamma, eps) * (Occ + 1)
                        LM = eVecs[l] * eVecs[m].dag()
                        ML = LM.dag()
                        PQ = eVecs[p] * eVecs[q].dag()
                        QP = PQ.dag()
                        """
                        if abs(secular_freq) !=0:
                            print (abs(secular_freq), r_up, A_lm, A_lm_star,
                                   A_pq, A_pq_star, r_down, l,m,p,q, m==q, l==p)
                        """
                        if abs(r_up * coeff_1) > 0:
                            L += r_up * coeff_1 * (spre(LM * QP) -
                                                   sprepost(QP, LM))
                        if abs(r_up * coeff_2) > 0:
                            L += r_up * coeff_2 * (spost(PQ * ML) -
                                                   sprepost(ML, PQ))
                        if abs(r_down * coeff_1) > 0:
                            L += r_down * coeff_1 * (spre(ML * PQ) -
                                                     sprepost(PQ, ML))
                        if abs(r_down * coeff_2) > 0:
                            L += r_down * coeff_2 * (spost(QP * LM) -
                                                     sprepost(LM, QP))
    if not silent:
        print(("It took ", time.time() - ti,
               " seconds to build the secular Liouvillian"))
        print((
            "Secular approximation kept {:0.2f}% of total ME terms. \n".format(
                100 * float(terms) / (d * d * d * d))))
    return -L
Exemplo n.º 4
0
def test_general_stochastic():
    "Stochastic: general_stochastic"
    "Reproduce smesolve homodyne"
    tol = 0.025
    N = 4
    gamma = 0.25
    ntraj = 20
    nsubsteps = 50
    a = destroy(N)

    H = [[a.dag() * a, f]]
    psi0 = coherent(N, 0.5)
    sc_ops = [np.sqrt(gamma) * a, np.sqrt(gamma) * a * 0.5]
    e_ops = [a.dag() * a, a + a.dag(), (-1j) * (a - a.dag())]

    L = liouvillian(QobjEvo([[a.dag() * a, f]], args={"a": 2}), c_ops=sc_ops)
    L.compile()
    sc_opsM = [QobjEvo(spre(op) + spost(op.dag())) for op in sc_ops]
    [op.compile() for op in sc_opsM]
    e_opsM = [spre(op) for op in e_ops]

    def d1(t, vec):
        return L.mul_vec(t, vec)

    def d2(t, vec):
        out = []
        for op in sc_opsM:
            out.append(op.mul_vec(t, vec) - op.expect(t, vec) * vec)
        return np.stack(out)

    times = np.linspace(0, 0.5, 13)
    res_ref = mesolve(H, psi0, times, sc_ops, e_ops, args={"a": 2})
    list_methods_tol = ['euler-maruyama', 'platen', 'explicit15']
    for solver in list_methods_tol:
        res = general_stochastic(ket2dm(psi0),
                                 times,
                                 d1,
                                 d2,
                                 len_d2=2,
                                 e_ops=e_opsM,
                                 normalize=False,
                                 ntraj=ntraj,
                                 nsubsteps=nsubsteps,
                                 solver=solver)
    assert_(
        all([
            np.mean(abs(res.expect[idx] - res_ref.expect[idx])) < tol
            for idx in range(len(e_ops))
        ]))
    assert_(len(res.measurement) == ntraj)
Exemplo n.º 5
0
def liouvillian_build(H_0, A, gamma, wRC, T_C):
    # Now this function has to construct the liouvillian so that it can be passed to mesolve
    H_0, A, Chi, Xi = RCME_operators(H_0, A, gamma, beta_f(T_C))
    L = 0
    L -= spre(A * Chi)
    L += sprepost(A, Chi)
    L += sprepost(Chi, A)
    L -= spost(Chi * A)

    L += spre(A * Xi)
    L += sprepost(A, Xi)
    L -= sprepost(Xi, A)
    L -= spost(Xi * A)

    return L, Chi + Xi
Exemplo n.º 6
0
def _convert_superoperator_to_qutip(expr, full_space, mapping):
    if full_space != expr.space:
        all_spaces = full_space.local_factors
        own_space_index = all_spaces.index(expr.space)
        return qutip.tensor(
            *([qutip.qeye(s.dimension) for s in all_spaces[:own_space_index]] +
              convert_to_qutip(expr, expr.space, mapping=mapping) + [
                  qutip.qeye(s.dimension)
                  for s in all_spaces[own_space_index + 1:]
              ]))
    if isinstance(expr, IdentitySuperOperator):
        return qutip.spre(
            qutip.tensor(
                *[qutip.qeye(s.dimension) for s in full_space.local_factors]))
    elif isinstance(expr, SuperOperatorPlus):
        return sum(
            (convert_to_qutip(op, full_space, mapping=mapping)
             for op in expr.operands),
            0,
        )
    elif isinstance(expr, SuperOperatorTimes):
        ops_qutip = [
            convert_to_qutip(o, full_space, mapping=mapping)
            for o in expr.operands
        ]
        return reduce(lambda a, b: a * b, ops_qutip, 1)
    elif isinstance(expr, ScalarTimesSuperOperator):
        return complex(expr.coeff) * convert_to_qutip(
            expr.term, full_space, mapping=mapping)
    elif isinstance(expr, SPre):
        return qutip.spre(
            convert_to_qutip(expr.operands[0], full_space, mapping))
    elif isinstance(expr, SPost):
        return qutip.spost(
            convert_to_qutip(expr.operands[0], full_space, mapping))
    elif isinstance(expr, SuperOperatorTimesOperator):
        sop, op = expr.operands
        return convert_to_qutip(sop, full_space,
                                mapping=mapping) * convert_to_qutip(
                                    op, full_space, mapping=mapping)
    elif isinstance(expr, ZeroSuperOperator):
        return qutip.spre(
            convert_to_qutip(ZeroOperator, full_space, mapping=mapping))
    else:
        raise ValueError("Cannot convert '%s' of type %s" %
                         (str(expr), type(expr)))
Exemplo n.º 7
0
    def test_terminator(self, combine):
        Q = sigmaz()
        op = -2 * spre(Q) * spost(Q.dag()) + spre(Q.dag() * Q) + spost(
            Q.dag() * Q)

        bath = DrudeLorentzPadeBath(
            Q=Q,
            lam=0.025,
            T=1 / 0.95,
            Nk=1,
            gamma=0.05,
            combine=combine,
        )
        delta, terminator = bath.terminator()

        assert np.abs(delta - (0.0 / 4.0)) < 1e-8
        assert isequal(terminator, -(0.0 / 4.0) * op, tol=1e-8)
Exemplo n.º 8
0
    def test_sprepost(self):
        U1 = rand_unitary(3)
        U2 = rand_unitary(3)

        S1 = spre(U1) * spost(U2)
        S2 = sprepost(U1, U2)

        assert_(S1 == S2)
Exemplo n.º 9
0
    def test_sprepost(self):
        U1 = rand_unitary(3)
        U2 = rand_unitary(3)

        S1 = spre(U1) * spost(U2)
        S2 = sprepost(U1, U2)

        assert_(S1 == S2)
Exemplo n.º 10
0
def L_vib_lindblad(H_vib, A, eps, Gamma, T, J, time_units='cm', silent=False):
    '''
    Initially assuming that the vibronic eigenstructure has no
    degeneracy and the secular approximation has been made
    '''
    ti = time.time()
    d = H_vib.shape[0]
    ti = time.time()
    L = 0
    eig = H_vib.eigenstates()
    eVals = eig[0]
    eVecs = eig[1]  # come out like kets
    l = 0
    occs = []
    for i in range(int(d)):
        l = 0
        for j in range(int(d)):
            t_0 = time.time(
            )  # initial time reference for tracking slow calculations
            lam_ij = A.matrix_element(eVecs[i].dag(), eVecs[j])
            #lam_mn = (A.dag()).matrix_element(eVecs[n].dag(), eVecs[m])
            lam_ij_sq = lam_ij * lam_ij.conjugate()  # real by construction
            eps_ij = abs(eVals[i] - eVals[j])
            if abs(lam_ij_sq) > 0:
                IJ = eVecs[i] * eVecs[j].dag()
                JI = eVecs[j] * eVecs[i].dag()
                JJ = eVecs[j] * eVecs[j].dag()
                II = eVecs[i] * eVecs[i].dag()

                Occ = Occupation(eps_ij, T, time_units)
                r_up = 2 * np.pi * J(eps_ij, Gamma, eps) * Occ
                r_down = 2 * np.pi * J(eps_ij, Gamma, eps) * (Occ + 1)

                T1 = r_up * spre(II) + r_down * spre(JJ)
                T2 = r_up.conjugate() * spost(II) + r_down.conjugate() * spost(
                    JJ)
                T3 = (r_up * sprepost(JI, IJ) + r_down * sprepost(IJ, JI))
                L += lam_ij_sq * (0.5 * (T1 + T2) - T3)
                l += 1
    if not silent:
        print(("It took ", time.time() - ti,
               " seconds to build the vibronic Lindblad Liouvillian"))
    return -L
Exemplo n.º 11
0
def test_general_stochastic():
    "Stochastic: general_stochastic"
    "Reproduce smesolve homodyne"
    tol = 0.025
    N = 4
    gamma = 0.25
    ntraj = 20
    nsubsteps = 50
    a = destroy(N)

    H = [[a.dag() * a,f]]
    psi0 = coherent(N, 0.5)
    sc_ops = [np.sqrt(gamma) * a, np.sqrt(gamma) * a * 0.5]
    e_ops = [a.dag() * a, a + a.dag(), (-1j)*(a - a.dag())]

    L = liouvillian(QobjEvo([[a.dag() * a,f]], args={"a":2}), c_ops = sc_ops)
    L.compile()
    sc_opsM = [QobjEvo(spre(op) + spost(op.dag())) for op in sc_ops]
    [op.compile() for op in sc_opsM]
    e_opsM = [spre(op) for op in e_ops]

    def d1(t, vec):
        return L.mul_vec(t,vec)

    def d2(t, vec):
        out = []
        for op in sc_opsM:
            out.append(op.mul_vec(t,vec)-op.expect(t,vec)*vec)
        return np.stack(out)

    times = np.linspace(0, 0.5, 13)
    res_ref = mesolve(H, psi0, times, sc_ops, e_ops, args={"a":2})
    list_methods_tol = ['euler-maruyama',
                        'platen',
                        'explicit15']
    for solver in list_methods_tol:
        res = general_stochastic(ket2dm(psi0),times,d1,d2,len_d2=2, e_ops=e_opsM,
                                 normalize=False, ntraj=ntraj, nsubsteps=nsubsteps,
                                 solver=solver)
    assert_(all([np.mean(abs(res.expect[idx] - res_ref.expect[idx])) < tol
                 for idx in range(len(e_ops))]))
    assert_(len(res.measurement) == ntraj)
Exemplo n.º 12
0
def L_EM_lindblad(splitting,
                  col_em,
                  Gamma,
                  T,
                  J,
                  time_units='cm',
                  silent=False):
    # col_em is collapse operator
    ti = time.time()
    L = 0
    EMnb = Occupation(splitting, T, time_units)
    L += 2 * np.pi * J(splitting, Gamma, splitting) * (EMnb + 1) * (
        sprepost(col_em, col_em.dag()) - 0.5 *
        (spre(col_em.dag() * col_em) + spost(col_em.dag() * col_em)))
    L += 2 * np.pi * J(splitting, Gamma, splitting) * EMnb * (
        sprepost(col_em.dag(), col_em) - 0.5 *
        (spre(col_em * col_em.dag()) + spost(col_em * col_em.dag())))
    if not silent:
        print(("It took ", time.time() - ti,
               " seconds to build the electronic-Lindblad Liouvillian"))
    return L
Exemplo n.º 13
0
    def testOperatorUnitaryTransform(self):
        """
        Superoperator: Unitary transformation with operators and superoperators
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho * U.dag()
        rho2_vec = spre(U) * spost(U.dag()) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
Exemplo n.º 14
0
    def testOperatorSpreAppl(self):
        """
        Superoperator: apply operator and superoperator from left (spre)
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho
        rho2_vec = spre(U) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
Exemplo n.º 15
0
def _spectrum_pi(H, wlist, c_ops, a_op, b_op, use_pinv=False):
    """
    Internal function for calculating the spectrum of the correlation function
    :math:`\left<A(\\tau)B(0)\\right>`.
    """

    #print issuper(H)

    L = H if issuper(H) else liouvillian(H, c_ops)

    tr_mat = tensor([qeye(n) for n in L.dims[0][0]])
    N = prod(L.dims[0][0])

    A = L.full()
    b = spre(b_op).full()
    a = spre(a_op).full()

    tr_vec = transpose(mat2vec(tr_mat.full()))

    rho_ss = steadystate(L)
    rho = transpose(mat2vec(rho_ss.full()))

    I = identity(N * N)
    P = kron(transpose(rho), tr_vec)
    Q = I - P

    spectrum = zeros(len(wlist))

    for idx, w in enumerate(wlist):
        if use_pinv:
            MMR = pinv(-1.0j * w * I + A)
        else:
            MMR = dot(Q, solve(-1.0j * w * I + A, Q))

        s = dot(tr_vec,
                   dot(a, dot(MMR, dot(b, transpose(rho)))))
        spectrum[idx] = -2 * real(s[0, 0])

    return spectrum
Exemplo n.º 16
0
    def testOperatorSpreAppl(self):
        """
        Superoperator: apply operator and superoperator from left (spre)
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho
        rho2_vec = spre(U) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
Exemplo n.º 17
0
    def testOperatorUnitaryTransform(self):
        """
        Superoperator: Unitary transformation with operators and superoperators
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho * U.dag()
        rho2_vec = spre(U) * spost(U.dag()) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
Exemplo n.º 18
0
def test_qpt_snot():
    "quantum process tomography for snot gate"

    U_psi = snot()
    U_rho = spre(U_psi) * spost(U_psi.dag())
    N = 1
    op_basis = [[qeye(2), sigmax(), 1j * sigmay(), sigmaz()] for i in range(N)]
    # op_label = [["i", "x", "y", "z"] for i in range(N)]
    chi1 = qpt(U_rho, op_basis)

    chi2 = np.zeros((2 ** (2 * N), 2 ** (2 * N)), dtype=complex)
    chi2[1, 1] = chi2[1, 3] = chi2[3, 1] = chi2[3, 3] = 0.5

    assert_(norm(chi2 - chi1) < 1e-8)
Exemplo n.º 19
0
def test_qpt_snot():
    "quantum process tomography for snot gate"

    U_psi = snot()
    U_rho = spre(U_psi) * spost(U_psi.dag())
    N = 1
    op_basis = [[qeye(2), sigmax(), 1j * sigmay(), sigmaz()] for i in range(N)]
    # op_label = [["i", "x", "y", "z"] for i in range(N)]
    chi1 = qpt(U_rho, op_basis)

    chi2 = np.zeros((2**(2 * N), 2**(2 * N)), dtype=complex)
    chi2[1, 1] = chi2[1, 3] = chi2[3, 1] = chi2[3, 3] = 0.5

    assert_(norm(chi2 - chi1) < 1e-8)
Exemplo n.º 20
0
def liouvillian_build_new(H_0, A, gamma, wRC, T_C):
    # Now this function has to construct the liouvillian so that it can be passed to mesolve
    H_0, A, Chi, Xi = RCME_operators(H_0, A, gamma, beta_f(T_C))
    Z = Chi + Xi
    Z_dag = Z.dag()
    L = 0
    #L+=spre(A*Z_dag)
    #L-=sprepost(A, Z)
    #L-=sprepost(Z_dag, A)
    #L+=spost(Z_dag*A)

    L -= spre(A * Z_dag)
    L += sprepost(A, Z)
    L += sprepost(Z_dag, A)
    L -= spost(Z * A)

    print("new L built")
    return L, Z
Exemplo n.º 21
0
    def liouvillian(self):
        """Build the total Liouvillian using the Dicke basis.

        Returns
        -------
        liouv: :class: qutip.Qobj
            The Liouvillian matrix for the system.
        """
        lindblad = self.lindbladian()
        if self.hamiltonian is None:
            liouv = lindblad

        else:
            hamiltonian = self.hamiltonian
            hamiltonian_superoperator = - 1j * \
                spre(hamiltonian) + 1j * spost(hamiltonian)
            liouv = lindblad + hamiltonian_superoperator
        return liouv
Exemplo n.º 22
0
Arquivo: piqs.py Projeto: yrsdi/qutip
    def liouvillian(self):
        """Build the total Liouvillian in the Dicke basis.

        Returns
        -------
        liouv: :class: qutip.Qobj
            The Liouvillian matrix for the system.
        """
        lindblad = self.lindbladian()
        if self.hamiltonian is None:
            liouv = lindblad

        else:
            hamiltonian = self.hamiltonian
            hamiltonian_superoperator = - 1j * \
                spre(hamiltonian) + 1j * spost(hamiltonian)
            liouv = lindblad + hamiltonian_superoperator
        return liouv
Exemplo n.º 23
0
def generator(k,H,L1,L2):
    """
    Create the generator for the cascaded chain of k system copies
    """
    # create bare operators
    id = qt.qeye(H.dims[0][0])
    Id = qt.spre(id)*qt.spost(id)
    Hlist = []
    L1list = []
    L2list = []
    for l in range(1,k+1):
        h = H
        l1 = L1
        l2 = L2
        for i in range(1,l):
            h = qt.tensor(h,id)
            l1 = qt.tensor(l1,id)
            l2 = qt.tensor(l2,id)
        for i in range(l+1,k+1):
            h = qt.tensor(id,h)
            l1 = qt.tensor(id,l1)
            l2 = qt.tensor(id,l2)
        Hlist.append(h)
        L1list.append(l1)
        L2list.append(l2)
    # create Lindbladian
    L = qt.Qobj()
    H0 = 0.5*Hlist[0]
    L0 = L2list[0]
    #L0 = 0.*L2list[0]
    L += qt.liouvillian(H0,[L0])
    E0 = Id
    for l in range(k-1):
        E0 = qt.composite(Id,E0)
        Hl = 0.5*(Hlist[l]+Hlist[l+1]+1j*(L1list[l].dag()*L2list[l+1] 
                                          -L2list[l+1].dag()*L1list[l]))
        Ll = L1list[l] + L2list[l+1]
        L += qt.liouvillian(Hl,[Ll])
    Hk = 0.5*Hlist[k-1]
    Hk = 0.5*Hlist[k-1]
    Lk = L1list[k-1]
    L += qt.liouvillian(Hk,[Lk])
    E0.dims = L.dims
    return L,E0
Exemplo n.º 24
0
def L_wc_analytic(detuning=0.,
                  Rabi=0,
                  alpha=0.,
                  w0=0.,
                  Gamma=0.,
                  T=0.,
                  tol=1e-7):
    energies, states = exciton_states(detuning, Rabi)
    dark_proj = states[0] * states[0].dag()
    bright_proj = states[1] * states[1].dag()
    ct_p = states[1] * states[0].dag()
    ct_m = states[0] * states[1].dag()
    cross_term = (ct_p + ct_m)
    epsilon = -detuning
    V = Rabi / 2

    eta = sqrt(epsilon**2 + 4 * V**2)

    # Bath 1 (only one bath)
    G = (lambda x: (DecayRate(x,
                              beta_f(T),
                              _J_underdamped,
                              Gamma,
                              w0,
                              imag_part=True,
                              alpha=alpha,
                              tol=tol)))
    G_0 = G(0.)
    G_p = G(eta)
    G_m = G(-eta)

    site_1 = (0.5 / eta) * ((eta + epsilon) * bright_proj +
                            (eta - epsilon) * dark_proj + 2 * V * cross_term)

    Z_1 = (0.5 / eta) * (G_0 * ((eta + epsilon) * bright_proj +
                                (eta - epsilon) * dark_proj) + 2 * V *
                         (ct_p * G_p + ct_m * G_m))

    L = -qt.spre(site_1 * Z_1) + qt.sprepost(Z_1, site_1)
    L += -qt.spost(Z_1.dag() * site_1) + qt.sprepost(site_1, Z_1.dag())

    return L
Exemplo n.º 25
0
def L_non_rwa(H_vib,
              A,
              w_0,
              Gamma,
              T_EM,
              J,
              principal=False,
              silent=False,
              alpha=0.,
              tol=1e-5):
    ti = time.time()
    beta = beta_f(T_EM)
    eVals, eVecs = H_vib.eigenstates()
    #J=J_minimal # J_minimal(omega, Gamma, omega_0)
    d_dim = len(eVals)
    G = 0
    for i in range(d_dim):
        for j in range(d_dim):
            eta = eVals[i] - eVals[j]
            s = eVecs[i] * (eVecs[j].dag())
            #print A.matrix_element(eVecs[i].dag(), eVecs[j])
            overlap = A.matrix_element(eVecs[i].dag(), eVecs[j])
            s *= A.matrix_element(eVecs[i].dag(), eVecs[j])
            s *= DecayRate(eta,
                           beta,
                           J,
                           Gamma,
                           w_0,
                           imag_part=principal,
                           alpha=alpha,
                           tol=tol)
            G += s
    G_dag = G.dag()
    # Initialise liouvilliian
    L = qt.spre(A * G) - qt.sprepost(G, A)
    L += qt.spost(G_dag * A) - qt.sprepost(A, G_dag)
    if not silent:
        print(("Calculating non-RWA Liouvilliian took {} seconds.".format(
            time.time() - ti)))
    return -L
Exemplo n.º 26
0
def liouvillian(epsilon, delta, J, T):
    L = 0 # Initialise liouvilliian
    Z = 0 # initialise operator Z
    #beta = 1 /(T* 0.695)
    beta = 7.683/T
    eta = np.sqrt(epsilon**2 + delta**2)
    # Here I define the eigenstates of the H_s
    H = qt.Qobj([[-epsilon/2., delta/2],[delta/2, epsilon/2.]])
    eVecs = H.eigenstates()[1]
    psi_p = (1/np.sqrt(2*eta))*(np.sqrt(eta-epsilon)*qt.basis(2,0) + np.sqrt(eta+epsilon)*qt.basis(2,1))
    psi_m = (-1/np.sqrt(2*eta))*(np.sqrt(eta+epsilon)*qt.basis(2,0) - np.sqrt(eta-epsilon)*qt.basis(2,1))

    #print H.eigenstates()
    # Jake's eigenvectors
    #psi_p = (1/np.sqrt(2*eta))*(np.sqrt(eta+epsilon)*qt.basis(2,0) - np.sqrt(eta-epsilon)*qt.basis(2,1))
    #psi_m = (1/np.sqrt(2*eta))*(np.sqrt(eta-epsilon)*qt.basis(2,0) + np.sqrt(eta+epsilon)*qt.basis(2,1))

    sigma_z = (1/eta)*(epsilon*(psi_p*psi_p.dag()-psi_m*psi_m.dag()) + delta*(psi_p*psi_m.dag() + psi_m*psi_p.dag()))

    Z = (1/eta)*(epsilon*(psi_p*psi_p.dag()-psi_m*psi_m.dag() )*Gamma(0, beta, J) + delta*(Gamma(eta, beta, J)*psi_p*psi_m.dag() + Gamma(-eta,beta, J)*psi_m*psi_p.dag()))

    L +=  qt.spre(sigma_z*Z) - qt.sprepost(Z, sigma_z)
    L += qt.spost(Z.dag()*sigma_z) - qt.sprepost(sigma_z, Z.dag())
    return -L
Exemplo n.º 27
0
def secular_term(state_j, state_k):
    jk = state_j*state_k.dag()
    kj = jk.dag()
    jj = state_j*state_j.dag()
    return 2*sprepost(kj, jk) - (spre(jj) + spost(jj))
Exemplo n.º 28
0
a=destroy(N)
adag=a.dag()

It= qeye(N)

tm = diag(sqrt(range(1, N)),1) # Lowering operator for the transmon.

print tm
print a

#tdiag = sparse(diag(0:2:2*(Nt-1))); % Operator for dephasing.
#tdiag = Qobj(diag(range(0, N))) # Diagonal matrix for the transmon.
#tdiag_l = kron(It,tdiag) # tdiag operator multiplying rho from the left.

tm_l = spre(a) #kron(It, a) # tm operator multiplying rho from the left.

#print
#print tm_l[1]
#print 
#print kron(eye(N), tm)[1]

#raise Exception
c_op_list = []

rate = gamma * (1 + N_gamma)

c_op_list.append(sqrt(rate) * a)  # decay operators

Lindblad_tm = rate*(kron(a.conj(),a) -
              0.5*kron(It,adag*a) -
Exemplo n.º 29
0
def commutator_term1(O1, O2):
    # [O1, O2*rho]
    return spre(O1*O2)-sprepost(O2, O1)
Exemplo n.º 30
0
 def _to_qutip(self, full_space):
     return qutip.spre(self.operands[0].to_qutip(full_space))
Exemplo n.º 31
0
def ttmsolve(dynmaps, rho0, times, e_ops=[], learningtimes=None, tensors=None,
             **kwargs):
    """
    Solve time-evolution using the Transfer Tensor Method, based on a set of
    precomputed dynamical maps.

    Parameters
    ----------
    dynmaps : list of :class:`qutip.Qobj`
        List of precomputed dynamical maps (superoperators),
        or a callback function that returns the
        superoperator at a given time.

    rho0 : :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    times : array_like
        list of times :math:`t_n` at which to compute :math:`\\rho(t_n)`.
        Must be uniformily spaced.

    e_ops : list of :class:`qutip.Qobj` / callback function
        single operator or list of operators for which to evaluate
        expectation values.

    learningtimes : array_like
        list of times :math:`t_k` for which we have knowledge of the dynamical
        maps :math:`E(t_k)`.

    tensors : array_like
        optional list of precomputed tensors :math:`T_k`

    kwargs : dictionary
        Optional keyword arguments. See
        :class:`qutip.nonmarkov.ttm.TTMSolverOptions`.

    Returns
    -------
    output: :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`.
    """

    opt = TTMSolverOptions(dynmaps=dynmaps, times=times,
                           learningtimes=learningtimes, **kwargs)

    diff = None

    if isket(rho0):
        rho0 = ket2dm(rho0)

    output = Result()
    e_sops_data = []

    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True

    else:
        try:
            tmp = e_ops[:]
            del tmp

            n_expt_op = len(e_ops)
            expt_callback = False

            if n_expt_op == 0:
                # fall back on storing states
                opt.store_states = True

            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(len(times)))
                else:
                    output.expect.append(np.zeros(len(times), dtype=complex))
        except TypeError:
            raise TypeError("Argument 'e_ops' should be a callable or" +
                            "list-like.")

    if tensors is None:
        tensors, diff = _generatetensors(dynmaps, learningtimes, opt=opt)

    if rho0.isoper:
        # vectorize density matrix
        rho0vec = operator_to_vector(rho0)
    else:
        # rho0 might be a super in which case we should not vectorize
        rho0vec = rho0

    K = len(tensors)
    states = [rho0vec]
    for n in range(1, len(times)):
        states.append(None)
        for k in range(n):
            if n-k < K:
                states[-1] += tensors[n-k]*states[k]
    for i, r in enumerate(states):
        if opt.store_states or expt_callback:
            if r.type == 'operator-ket':
                states[i] = vector_to_operator(r)
            else:
                states[i] = r
            if expt_callback:
                # use callback method
                e_ops(times[i], states[i])
        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 0)
            else:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 1)

    output.solver = "ttmsolve"
    output.times = times

    output.ttmconvergence = diff

    if opt.store_states:
        output.states = states

    return output
Exemplo n.º 32
0
def ttmsolve(dynmaps, rho0, times, e_ops=[], learningtimes=None, tensors=None,
             **kwargs):
    """
    Solve time-evolution using the Transfer Tensor Method, based on a set of
    precomputed dynamical maps.

    Parameters
    ----------
    dynmaps : list of :class:`qutip.Qobj`
        List of precomputed dynamical maps (superoperators),
        or a callback function that returns the
        superoperator at a given time.

    rho0 : :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    times : array_like
        list of times :math:`t_n` at which to compute :math:`\\rho(t_n)`.
        Must be uniformily spaced.

    e_ops : list of :class:`qutip.Qobj` / callback function
        single operator or list of operators for which to evaluate
        expectation values.

    learningtimes : array_like
        list of times :math:`t_k` for which we have knowledge of the dynamical
        maps :math:`E(t_k)`.

    tensors : array_like
        optional list of precomputed tensors :math:`T_k`

    kwargs : dictionary
        Optional keyword arguments. See
        :class:`qutip.nonmarkov.ttm.TTMSolverOptions`.

    Returns
    -------
    output: :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`.
    """

    opt = TTMSolverOptions(dynmaps=dynmaps, times=times,
                           learningtimes=learningtimes, **kwargs)

    diff = None

    if isket(rho0):
        rho0 = ket2dm(rho0)

    output = Result()
    e_sops_data = []

    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True

    else:
        try:
            tmp = e_ops[:]
            del tmp

            n_expt_op = len(e_ops)
            expt_callback = False

            if n_expt_op == 0:
                # fall back on storing states
                opt.store_states = True

            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(len(times)))
                else:
                    output.expect.append(np.zeros(len(times), dtype=complex))
        except TypeError:
            raise TypeError("Argument 'e_ops' should be a callable or" +
                            "list-like.")

    if tensors is None:
        tensors, diff = _generatetensors(dynmaps, learningtimes, opt=opt)

    rho0vec = operator_to_vector(rho0)

    K = len(tensors)
    states = [rho0vec]
    for n in range(1, len(times)):
        states.append(None)
        for k in range(n):
            if n-k < K:
                states[-1] += tensors[n-k]*states[k]
    for i, r in enumerate(states):
        if opt.store_states or expt_callback:
            if r.type == 'operator-ket':
                states[i] = vector_to_operator(r)
            else:
                states[i] = r
            if expt_callback:
                # use callback method
                e_ops(times[i], states[i])
        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 0)
            else:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 1)

    output.solver = "ttmsolve"
    output.times = times

    output.ttmconvergence = diff

    if opt.store_states:
        output.states = states

    return output
Exemplo n.º 33
0
def rcsolve(Hsys, psi0, tlist, e_ops, Q, wc, alpha, N, w_th, sparse=False,
            options=None):
    """
    Function to solve for an open quantum system using the
    reaction coordinate (RC) model.

    Parameters
    ----------
    Hsys: Qobj
        The system hamiltonian.
    psi0: Qobj
        Initial state of the system.
    tlist: List.
        Time over which system evolves.
    e_ops: list of :class:`qutip.Qobj` / callback function single
        Single operator or list of operators for which to evaluate
        expectation values.
    Q: Qobj
        The coupling between system and bath.
    wc: Float
        Cutoff frequency.
    alpha: Float
        Coupling strength.
    N: Integer
        Number of cavity fock states.
    w_th: Float
        Temperature.
    sparse: Boolean
        Optional argument to call the sparse eigenstates solver if needed.
    options : :class:`qutip.Options`
        With options for the solver.

    Returns
    -------
    output: Result
        System evolution.
    """
    if options is None:
        options = Options()

    dot_energy, dot_state = Hsys.eigenstates(sparse=sparse)
    deltaE = dot_energy[1] - dot_energy[0]
    if (w_th < deltaE/2):
        warnings.warn("Given w_th might not provide accurate results")
    gamma = deltaE / (2 * np.pi * wc)
    wa = 2 * np.pi * gamma * wc  # reaction coordinate frequency
    g = np.sqrt(np.pi * wa * alpha / 2.0)  # reaction coordinate coupling
    nb = (1 / (np.exp(wa/w_th) - 1))

    # Reaction coordinate hamiltonian/operators

    dimensions = dims(Q)
    a = tensor(destroy(N), qeye(dimensions[1]))
    unit = tensor(qeye(N), qeye(dimensions[1]))
    Nmax = N * dimensions[1][0]
    Q_exp = tensor(qeye(N), Q)
    Hsys_exp = tensor(qeye(N), Hsys)
    e_ops_exp = [tensor(qeye(N), kk) for kk in e_ops]

    na = a.dag() * a
    xa = a.dag() + a

    # decoupled Hamiltonian
    H0 = wa * a.dag() * a + Hsys_exp
    # interaction
    H1 = (g * (a.dag() + a) * Q_exp)
    H = H0 + H1
    L = 0
    PsipreEta = 0
    PsipreX = 0

    all_energy, all_state = H.eigenstates(sparse=sparse)
    Apre = spre((a + a.dag()))
    Apost = spost(a + a.dag())
    for j in range(Nmax):
        for k in range(Nmax):
            A = xa.matrix_element(all_state[j].dag(), all_state[k])
            delE = (all_energy[j] - all_energy[k])
            if abs(A) > 0.0:
                if abs(delE) > 0.0:
                    X = (0.5 * np.pi * gamma*(all_energy[j] - all_energy[k])
                         * (np.cosh((all_energy[j] - all_energy[k]) /
                            (2 * w_th))
                         / (np.sinh((all_energy[j] - all_energy[k]) /
                            (2 * w_th)))) * A)
                    eta = (0.5 * np.pi * gamma *
                           (all_energy[j] - all_energy[k]) * A)
                    PsipreX = PsipreX + X * all_state[j] * all_state[k].dag()
                    PsipreEta = PsipreEta + (eta * all_state[j]
                                             * all_state[k].dag())
                else:
                    X = 0.5 * np.pi * gamma * A * 2 * w_th
                    PsipreX = PsipreX + X * all_state[j] * all_state[k].dag()

    A = a + a.dag()
    L = ((-spre(A * PsipreX)) + (sprepost(A, PsipreX))
         + (sprepost(PsipreX, A)) + (-spost(PsipreX * A))
         + (spre(A * PsipreEta)) + (sprepost(A, PsipreEta))
         + (-sprepost(PsipreEta, A)) + (-spost(PsipreEta * A)))

    # Setup the operators and the Hamiltonian and the master equation
    # and solve for time steps in tlist
    rho0 = (tensor(thermal_dm(N, nb), psi0))
    output = mesolve(H, rho0, tlist, [L], e_ops_exp, options=options)

    return output
Exemplo n.º 34
0
N_gamma = 1/(exp(wd/T)-1)# % Thermal population of the transmon phonon bath around wd.

print N_gamma
N = 5  # number of basis states to consider

phi_arr=linspace(0.2, 0.35, 51)
Ej_arr=linspace(10078, 17960, 51)
w0_arr=linspace(4211, 5622, 301)

a = destroy(N)
adag=a.dag()

#Qobj(diag(range(0, 2*N, 2))) #dephasing operator, tdiag

print spre(a) #tm_l = kron(Itot,tm); tm operator multiplying rho from the left.

p = -1.0j*(adag - a) # "P" operator.

print p

print spre(p) #p_l = kron(Itot,p) % "P" operator multiplying rho from the left.


print spost(p)  #p_r = kron(transpose(p),Itot) % "P" operator multiplying rho from the right.

#It= qeye(N)

c_op_list = []

rate = gamma * (1 + N_gamma)
Exemplo n.º 35
0
 def test_spre_td(self):
     "Superoperator: spre, time-dependent"
     assert_(spre(self.t1)(.5) == spre(self.t1(.5)))
Exemplo n.º 36
0
 def _to_qutip(self, full_space):
     return qutip.spre(qutip.tensor(*[qutip.qeye(s.dimension) for s in full_space.local_factors()]))
Exemplo n.º 37
0
def rcsolve(Hsys,
            psi0,
            tlist,
            e_ops,
            Q,
            wc,
            alpha,
            N,
            w_th,
            sparse=False,
            options=None):
    """
    Function to solve for an open quantum system using the
    reaction coordinate (RC) model.

    Parameters
    ----------
    Hsys: Qobj
        The system hamiltonian.
    psi0: Qobj
        Initial state of the system.
    tlist: List.
        Time over which system evolves.
    e_ops: list of :class:`qutip.Qobj` / callback function single
        Single operator or list of operators for which to evaluate
        expectation values.
    Q: Qobj
        The coupling between system and bath.
    wc: Float
        Cutoff frequency.
    alpha: Float
        Coupling strength.
    N: Integer
        Number of cavity fock states.
    w_th: Float
        Temperature.
    sparse: Boolean
        Optional argument to call the sparse eigenstates solver if needed.
    options : :class:`qutip.Options`
        With options for the solver.

    Returns
    -------
    output: Result
        System evolution.
    """
    if options is None:
        options = Options()

    dot_energy, dot_state = Hsys.eigenstates(sparse=sparse)
    deltaE = dot_energy[1] - dot_energy[0]
    if (w_th < deltaE / 2):
        warnings.warn("Given w_th might not provide accurate results")
    gamma = deltaE / (2 * np.pi * wc)
    wa = 2 * np.pi * gamma * wc  # reaction coordinate frequency
    g = np.sqrt(np.pi * wa * alpha / 2.0)  # reaction coordinate coupling
    nb = (1 / (np.exp(wa / w_th) - 1))

    # Reaction coordinate hamiltonian/operators

    dimensions = dims(Q)
    a = tensor(destroy(N), qeye(dimensions[1]))
    unit = tensor(qeye(N), qeye(dimensions[1]))
    Nmax = N * dimensions[1][0]
    Q_exp = tensor(qeye(N), Q)
    Hsys_exp = tensor(qeye(N), Hsys)
    e_ops_exp = [tensor(qeye(N), kk) for kk in e_ops]

    na = a.dag() * a
    xa = a.dag() + a

    # decoupled Hamiltonian
    H0 = wa * a.dag() * a + Hsys_exp
    # interaction
    H1 = (g * (a.dag() + a) * Q_exp)
    H = H0 + H1
    L = 0
    PsipreEta = 0
    PsipreX = 0

    all_energy, all_state = H.eigenstates(sparse=sparse)
    Apre = spre((a + a.dag()))
    Apost = spost(a + a.dag())
    for j in range(Nmax):
        for k in range(Nmax):
            A = xa.matrix_element(all_state[j].dag(), all_state[k])
            delE = (all_energy[j] - all_energy[k])
            if abs(A) > 0.0:
                if abs(delE) > 0.0:
                    X = (0.5 * np.pi * gamma *
                         (all_energy[j] - all_energy[k]) * (np.cosh(
                             (all_energy[j] - all_energy[k]) /
                             (2 * w_th)) / (np.sinh(
                                 (all_energy[j] - all_energy[k]) /
                                 (2 * w_th)))) * A)
                    eta = (0.5 * np.pi * gamma *
                           (all_energy[j] - all_energy[k]) * A)
                    PsipreX = PsipreX + X * all_state[j] * all_state[k].dag()
                    PsipreEta = PsipreEta + (eta * all_state[j] *
                                             all_state[k].dag())
                else:
                    X = 0.5 * np.pi * gamma * A * 2 * w_th
                    PsipreX = PsipreX + X * all_state[j] * all_state[k].dag()

    A = a + a.dag()
    L = ((-spre(A * PsipreX)) + (sprepost(A, PsipreX)) +
         (sprepost(PsipreX, A)) + (-spost(PsipreX * A)) +
         (spre(A * PsipreEta)) + (sprepost(A, PsipreEta)) +
         (-sprepost(PsipreEta, A)) + (-spost(PsipreEta * A)))

    # Setup the operators and the Hamiltonian and the master equation
    # and solve for time steps in tlist
    rho0 = (tensor(thermal_dm(N, nb), psi0))
    output = mesolve(H, rho0, tlist, [L], e_ops_exp, options=options)

    return output
Exemplo n.º 38
0
#w12_vec(i) = wT_vec(3)- wT_vec(2);
#w23_vec(i) = wT_vec(4)- wT_vec(3);
#w34_vec(i) = wT_vec(5)- wT_vec(4);
H = make_H(0.2, 190, 4000.0)
print H
L = liouvillian(H, c_op_list)
print L
tr_mat = tensor([qeye(n) for n in L.dims[0][0]])
print tr_mat
tr_vec = transpose(mat2vec(tr_mat.full()))
print tr_vec
N = prod(L.dims[0][0])
print N
A = L.full()

a_sup = spre(a).full()
b_sup = spre(p).full()

D, U = eig(A)
print "D", D
I = identity(N * N)
w = 3.0
MMR1 = pinv(-1.0j * w * I + A)
print A * MMR1 * inv(A)
print U * MMR1 * inv(U)
#raise Exception

#A.expm()

#MMR1 = pinv(1.0j * w * I + diag(D))
Exemplo n.º 39
0
N_gamma = 1 / (exp(wd / T) - 1
               )  # % Thermal population of the transmon phonon bath around wd.

print N_gamma
N = 5  # number of basis states to consider

phi_arr = linspace(0.2, 0.35, 51)
Ej_arr = linspace(10078, 17960, 51)
w0_arr = linspace(4211, 5622, 301)

a = destroy(N)
adag = a.dag()

#Qobj(diag(range(0, 2*N, 2))) #dephasing operator, tdiag

print spre(
    a)  #tm_l = kron(Itot,tm); tm operator multiplying rho from the left.

p = -1.0j * (adag - a)  # "P" operator.

print p

print spre(
    p)  #p_l = kron(Itot,p) % "P" operator multiplying rho from the left.

print spost(
    p
)  #p_r = kron(transpose(p),Itot) % "P" operator multiplying rho from the right.

#It= qeye(N)

c_op_list = []
Exemplo n.º 40
0
 def test_spre_td(self):
     "Superoperator: spre, time-dependent"
     assert_(spre(self.t1)(.5) == spre(self.t1(.5)))
Exemplo n.º 41
0
def find_expect(phi=0.1, Omega_vec=3.0, wd=wd, use_pinv=True):

    Ej = (phi**2) / (
        8 * Ec
    )  #Ejmax*absolute(cos(pi*phi)) #; % Josephson energy as function of Phi.

    wTvec = -Ej + sqrt(8.0 * Ej * Ec) * (nvec + 0.5) + Ecvec

    #wdvec=nvec*sqrt(8.0*Ej*Ec)
    #wdvec=nvec*wd

    wT = wTvec - wdvec
    transmon_levels = Qobj(diag(wT[range(N)]))
    H = transmon_levels + Omega_vec  #- 0.5j*(Omega_true*adag - conj(Omega_true)*a)
    L = liouvillian(
        H, c_op_list)  #ends at same thing as L = H_comm + Lindblad_tm ;
    rho_ss = steadystate(L)  #same as rho_ss_c but that's in column vector form

    tr_mat = tensor([qeye(n) for n in L.dims[0][0]])
    #N = prod(L.dims[0][0])

    A = L.full()
    #D, U= L.eigenstates()
    #print D.shape, D
    #print diag(D)
    b = spre(p).full() - spost(p).full()
    a2 = spre(a).full()

    tr_vec = transpose(mat2vec(tr_mat.full()))

    rho = transpose(mat2vec(rho_ss.full()))

    I = identity(N * N)
    P = kron(transpose(rho), tr_vec)
    Q = I - P

    #wp=4.9
    #w=-(wp-wd)
    spectrum = zeros(len(wlist2), dtype=complex)
    for idx, w in enumerate(wlist2):

        if use_pinv:
            MMR = pinv(-1.0j * w * I + A)  #eig(MMR)[0] is equiv to Dint
        else:
            MMR = dot(Q, solve(-1.0j * w * I + A, Q))
    #print diag(1.0/(1j*(wp-wd)*ones(N**2)+D)) #Dint = diag(1./(1i*(wp-wd)*diag(eye(dim^2)) + diag(D)))

    #print 1.0/(1j*(wp-wd)*ones(N**2)+D) #Dint = diag(1./(1i*(wp-wd)*diag(eye(dim^2)) + diag(D)))
    #U2=squeeze([u.full() for u in U]).transpose()
    #Dint=eig(MMR)[0]
    #print "MMR", eig(MMR)[1]
    #print "Umult", U2*Dint*inv(U2)

        s = dot(tr_vec, dot(a2, dot(MMR, dot(b, transpose(rho)))))
        #spectrum[idx] = -2 * real(s[0, 0])
        spectrum[idx] = 1j * s[0][0]  #matches Chi_temp result #(1/theta_steps)
    return spectrum
    #final_state = steadystate(H, c_op_list)
    #print H.shape
    #print dir(H)
    #U,D = eig(H.full())
    #print D
    #Uinv = Qobj(inv(D))
    #U=Qobj(D)
    # Doing the chi integral (gives the susceptibility)

    #Dint = 1.0/(1.0j*(wp-wd)) #Qobj(1.0/(1.0j*(wp-wd)*diag(qeye(N**2))))# + diag(D))))

    #Hint = H.expm() #U*H*Uinv

    #Chi_temp(i,j) += (1.0/theta_steps)*1j*trace(reshape(tm_l*Lint*(p_l - p_r)*rho_ss_c,dim,dim))
    #exp1=correlation_2op_1t(H, None, wlist2, c_op_list, a, p, solver="es")
    #exp2=correlation_2op_1t(H, None, wlist2, c_op_list, p, a, solver="es", reverse=True)
    #exp1=correlation_2op_1t(H, None, wlist2, c_op_list, a, p_l-p_r, solver="es")

    #exp1=correlation_ss(H, wlist2, c_op_list, a, p)
    #exp2=correlation_ss(H, wlist2, c_op_list, p, a, reverse=True)
    exp1 = spectrum(H, wlist2, c_op_list, a, p, solver="pi", use_pinv=False)
    exp2 = spectrum(H, wlist2, c_op_list, p, a, solver="pi", use_pinv=False)
    return exp1 - exp2
    return expect(a, final_state)  #tm_l
Exemplo n.º 42
0
Ej=1.0
wd=4.8
Omega=3.0

#print qeye(N)
#print help(qeye)
a=destroy(N) #equivalent to tm
adag=a.dag()
#print a

#print a.dag() #equivalent to tp

print Qobj(diag(range(0, 2*N, 2))) #dephasing operator, tdiag
#print help(diag)

print spre(a) #tm_l = kron(Itot,tm);

p = -1.0j*(adag - a) # "P" operator.

print p

print spre(p) #p_l = kron(Itot,p) % "P" operator multiplying rho from the left.


print spost(p)  #p_r = kron(transpose(p),Itot) % "P" operator multiplying rho from the right.
N_gamma=0.0
gamma=0.01
rate = gamma 

c_op_list=[sqrt(rate) * a,]  # decay operators
Exemplo n.º 43
0
import qutip as qt

import cascade

gamma = 1.0 # coupling strength to reservoir
phi = 1.*np.pi # phase shift in fb loop
eps = 2.0*np.pi*gamma # eps/2 = Rabi frequency
delta = 0. # detuning

# time delay
tau = np.pi/(eps)
print 'tau =',tau

dim_S = 2
Id = qt.spre(qt.qeye(dim_S))*qt.spost(qt.qeye(dim_S))

# Hamiltonian and jump operators
H_S = delta*qt.sigmap()*qt.sigmam() + eps*(qt.sigmam()+qt.sigmap())
L1 = sp.sqrt(gamma)*qt.sigmam()
L2 = sp.exp(1j*phi)*L1

# initial state
rho0 = qt.ket2dm(qt.basis(2,0))

# times to evaluate rho(t)
tlist=np.arange(0.0001,2*tau,0.01)

def run(rho0=rho0,tau=tau,tlist=tlist):
    # run feedback simulation
    opts = qt.Options()
Exemplo n.º 44
0
    def outfieldpropagator(self, blist, tlist, tau, c1=None, c2=None,
                           notrace=False):
        r"""
        Compute propagator for computing output field expectation values
        <O_n(tn)...O_2(t2)O_1(t1)> for times t1,t2,... and
        O_i = I, b_out, b_out^\dagger, b_loop, b_loop^\dagger

        Parameters
        ----------
        blist : array_like
            List of integers specifying the field operators:
            0: I (nothing)
            1: b_out
            2: b_out^\dagger
            3: b_loop
            4: b_loop^\dagger

        tlist : array_like
            list of corresponding times t1,..,tn at which to evaluate the field
            operators

        tau : float
            time-delay

        c1 : :class:`qutip.Qobj`
            system collapse operator that couples to the in-loop field in
            question (only needs to be specified if self.L1 has more than one
            element)

        c2 : :class:`qutip.Qobj`
            system collapse operator that couples to the output field in
            question (only needs to be specified if self.L2 has more than one
            element)

        notrace : bool {False}
            If this optional is set to True, a propagator is returned for a
            cascade of k systems, where :math:`(k-1) tau < t < k tau`.
            If set to False (default), a generalized partial trace is performed
            and a propagator for a single system is returned.

        Returns
        -------
        : :class:`qutip.Qobj`
            time-propagator for computing field correlation function
        """
        if c1 is None and len(self.L1) == 1:
            c1 = self.L1[0]
        else:
            raise ValueError('Argument c1 has to be specified when more than' +
                             'one collapse operator couples to the feedback' +
                             'loop.')
        if c2 is None and len(self.L2) == 1:
            c2 = self.L2[0]
        else:
            raise ValueError('Argument c1 has to be specified when more than' +
                             'one collapse operator couples to the feedback' +
                             'loop.')
        klist = []
        slist = []
        for t in tlist:
            klist.append(int(t/tau)+1)
            slist.append(t-(klist[-1]-1)*tau)
        kmax = max(klist)
        zipped = sorted(zip(slist, klist, blist))
        slist = [s for (s, k, b) in zipped]
        klist = [k for (s, k, b) in zipped]
        blist = [b for (s, k, b) in zipped]

        G1, E0 = _generator(kmax, self.H_S, self.L1, self.L2, self.S_matrix,
                            self.c_ops_markov)
        sprev = 0.
        E = E0
        for i, s in enumerate(slist):
            E = _integrate(G1, E, sprev, s, integrator=self.integrator,
                    parallel=self.parallel, opt=self.options)
            if klist[i] == 1:
                l1 = 0.*qt.Qobj()
            else:
                l1 = _localop(c1, klist[i]-1, kmax)
            l2 = _localop(c2, klist[i], kmax)
            if blist[i] == 0:
                superop = self.Id
            elif blist[i] == 1:
                superop = qt.spre(l1+l2)
            elif blist[i] == 2:
                superop = qt.spost(l1.dag()+l2.dag())
            elif blist[i] == 3:
                superop = qt.spre(l1)
            elif blist[i] == 4:
                superop = qt.spost(l1.dag())
            else:
                raise ValueError('Allowed values in blist are 0, 1, 2, 3 ' +
                                 'and 4.')
            superop.dims = E.dims
            E = superop*E
            sprev = s
        E = _integrate(G1, E, slist[-1], tau, integrator=self.integrator,
                parallel=self.parallel, opt=self.options)

        E.dims = E0.dims
        if not notrace:
            E = _genptrace(E, kmax)
        return E
Exemplo n.º 45
0
def hsolve(H, psi0, tlist, Q, gam, lam0, Nc, N, w_th, options=None):
    """
    Function to solve for an open quantum system using the
    hierarchy model.

    Parameters
    ----------
    H: Qobj
        The system hamiltonian.
    psi0: Qobj
        Initial state of the system.
    tlist: List.
        Time over which system evolves.
    Q: Qobj
        The coupling between system and bath.
    gam: Float
        Bath cutoff frequency.
    lam0: Float
        Coupling strength.
    Nc: Integer
        Cutoff parameter.
    N: Integer
        Number of matsubara terms.
    w_th: Float
        Temperature.
    options : :class:`qutip.Options`
        With options for the solver.

    Returns
    -------
    output: Result
        System evolution.
    """
    if options is None:
        options = Options()

    # Set up terms of the matsubara and tanimura boundaries

    # Parameters and hamiltonian
    hbar = 1.
    kb = 1.

    # Set by system
    dimensions = dims(H)
    Nsup = dimensions[0][0] * dimensions[0][0]
    unit = qeye(dimensions[0])

    # Ntot is the total number of ancillary elements in the hierarchy
    Ntot = int(round(factorial(Nc+N) / (factorial(Nc) * factorial(N))))
    c0 = (lam0 * gam * (_cot(gam * hbar / (2. * kb * w_th)) - (1j))) / hbar
    LD1 = (-2. * spre(Q) * spost(Q.dag()) + spre(Q.dag()*Q) + spost(Q.dag()*Q))
    pref = ((2. * lam0 * kb * w_th / (gam * hbar)) - 1j * lam0) / hbar
    gj = 2 * np.pi * kb * w_th / hbar
    L12 = -pref * LD1 + (c0 / gam) * LD1

    for i1 in range(1, N):
        num = (4 * lam0 * gam * kb * w_th * i1 * gj/((i1 * gj)**2 - gam**2))
        ci = num / (hbar**2)
        L12 = L12 + (ci / gj) * LD1

    # Setup liouvillian

    L = liouvillian(H, [L12])
    Ltot = L.data
    unit = sp.eye(Ntot,format='csr')
    Lbig = sp.kron(unit, Ltot)
    rho0big1 = np.zeros((Nsup * Ntot), dtype=complex)

    # Prepare initial state:

    rhotemp = mat2vec(np.array(psi0.full(), dtype=complex))

    for idx, element in enumerate(rhotemp):
        rho0big1[idx] = element[0]
    
    nstates, state2idx, idx2state = enr_state_dictionaries([Nc+1]*(N), Nc)
    for nlabelt in state_number_enumerate([Nc+1]*(N), Nc):
        nlabel = list(nlabelt)
        ntotalcheck = 0
        for ncheck in range(N):
            ntotalcheck = ntotalcheck + nlabel[ncheck]
        current_pos = int(round(state2idx[tuple(nlabel)]))
        Ltemp = sp.lil_matrix((Ntot, Ntot))
        Ltemp[current_pos, current_pos] = 1
        Ltemp.tocsr()
        Lbig = Lbig + sp.kron(Ltemp, (-nlabel[0] * gam * spre(unit).data))

        for kcount in range(1, N):
            counts = -nlabel[kcount] * kcount * gj * spre(unit).data
            Lbig = Lbig + sp.kron(Ltemp, counts)

        for kcount in range(N):
            if nlabel[kcount] >= 1:
                # find the position of the neighbour
                nlabeltemp = copy(nlabel)
                nlabel[kcount] = nlabel[kcount] - 1
                current_pos2 = int(round(state2idx[tuple(nlabel)]))
                Ltemp = sp.lil_matrix((Ntot, Ntot))
                Ltemp[current_pos, current_pos2] = 1
                Ltemp.tocsr()
                # renormalized version:
                ci = (4 * lam0 * gam * kb * w_th * kcount
                      * gj/((kcount * gj)**2 - gam**2)) / (hbar**2)
                if kcount == 0:
                    Lbig = Lbig + sp.kron(Ltemp, (-1j
                                          * (np.sqrt(nlabeltemp[kcount]
                                             / abs(c0)))
                                          * ((c0) * spre(Q).data
                                             - (np.conj(c0))
                                             * spost(Q).data)))
                if kcount > 0:
                    ci = (4 * lam0 * gam * kb * w_th * kcount
                          * gj/((kcount * gj)**2 - gam**2)) / (hbar**2)
                    Lbig = Lbig + sp.kron(Ltemp, (-1j
                                          * (np.sqrt(nlabeltemp[kcount]
                                             / abs(ci)))
                                          * ((ci) * spre(Q).data
                                             - (np.conj(ci))
                                             * spost(Q).data)))
                nlabel = copy(nlabeltemp)

        for kcount in range(N):
            if ntotalcheck <= (Nc-1):
                nlabeltemp = copy(nlabel)
                nlabel[kcount] = nlabel[kcount] + 1
                current_pos3 = int(round(state2idx[tuple(nlabel)]))
            if current_pos3 <= (Ntot):
                Ltemp = sp.lil_matrix((Ntot, Ntot))
                Ltemp[current_pos, current_pos3] = 1
                Ltemp.tocsr()
            # renormalized
                if kcount == 0:
                    Lbig = Lbig + sp.kron(Ltemp, -1j
                                          * (np.sqrt((nlabeltemp[kcount]+1)
                                             * abs(c0)))
                                          * (spre(Q) - spost(Q)).data)
                if kcount > 0:
                    ci = (4 * lam0 * gam * kb * w_th * kcount
                          * gj/((kcount * gj)**2 - gam**2)) / (hbar**2)
                    Lbig = Lbig + sp.kron(Ltemp, -1j
                                          * (np.sqrt((nlabeltemp[kcount]+1)
                                             * abs(ci)))
                                          * (spre(Q) - spost(Q)).data)
            nlabel = copy(nlabeltemp)

    output = []
    for element in rhotemp:
        output.append([])
    r = scipy.integrate.ode(cy_ode_rhs)
    Lbig2 = Lbig.tocsr()
    r.set_f_params(Lbig2.data, Lbig2.indices, Lbig2.indptr)
    r.set_integrator('zvode', method=options.method, order=options.order,
                     atol=options.atol, rtol=options.rtol,
                     nsteps=options.nsteps, first_step=options.first_step,
                     min_step=options.min_step, max_step=options.max_step)

    r.set_initial_value(rho0big1, tlist[0])
    dt = tlist[1] - tlist[0]

    for t_idx, t in enumerate(tlist):
        r.integrate(r.t + dt)
        for idx, element in enumerate(rhotemp):
            output[idx].append(r.y[idx])

    return output
Exemplo n.º 46
0
 def _to_qutip(self, full_space):
     return qutip.spre(ZeroOperator.to_qutip(full_space))
Exemplo n.º 47
0
def find_expect(phi=0.1, Omega_vec=3.0, wd=wd, use_pinv=True):

    Ej = (phi**2)/(8*Ec) #Ejmax*absolute(cos(pi*phi)) #; % Josephson energy as function of Phi.

    wTvec = -Ej + sqrt(8.0*Ej*Ec)*(nvec+0.5)+Ecvec

    #wdvec=nvec*sqrt(8.0*Ej*Ec)
    #wdvec=nvec*wd

    wT = wTvec-wdvec
    transmon_levels = Qobj(diag(wT[range(N)]))
    H=transmon_levels +Omega_vec #- 0.5j*(Omega_true*adag - conj(Omega_true)*a)
    L=liouvillian(H, c_op_list) #ends at same thing as L = H_comm + Lindblad_tm ;
    rho_ss = steadystate(L) #same as rho_ss_c but that's in column vector form

    tr_mat = tensor([qeye(n) for n in L.dims[0][0]])
    #N = prod(L.dims[0][0])

    A = L.full()
    #D, U= L.eigenstates()
    #print D.shape, D
    #print diag(D)
    b = spre(p).full()-spost(p).full()
    a2 = spre(a).full()

    tr_vec = transpose(mat2vec(tr_mat.full()))

    rho = transpose(mat2vec(rho_ss.full()))

    I = identity(N * N)
    P = kron(transpose(rho), tr_vec)
    Q = I - P

    #wp=4.9
    #w=-(wp-wd)
    spectrum = zeros(len(wlist2), dtype=complex)
    for idx, w in enumerate(wlist2):

        if use_pinv:
            MMR = pinv(-1.0j * w * I + A) #eig(MMR)[0] is equiv to Dint
        else:
            MMR = dot(Q, solve(-1.0j * w * I + A, Q))
    #print diag(1.0/(1j*(wp-wd)*ones(N**2)+D)) #Dint = diag(1./(1i*(wp-wd)*diag(eye(dim^2)) + diag(D)))

    #print 1.0/(1j*(wp-wd)*ones(N**2)+D) #Dint = diag(1./(1i*(wp-wd)*diag(eye(dim^2)) + diag(D)))
    #U2=squeeze([u.full() for u in U]).transpose()
    #Dint=eig(MMR)[0]
    #print "MMR", eig(MMR)[1]
    #print "Umult", U2*Dint*inv(U2)

        s = dot(tr_vec,
            dot(a2, dot(MMR, dot(b, transpose(rho)))))
        #spectrum[idx] = -2 * real(s[0, 0])
        spectrum[idx]=1j*s[0][0] #matches Chi_temp result #(1/theta_steps)
    return spectrum
    #final_state = steadystate(H, c_op_list)
    #print H.shape
    #print dir(H)
    #U,D = eig(H.full())
    #print D
    #Uinv = Qobj(inv(D))
    #U=Qobj(D)
    # Doing the chi integral (gives the susceptibility)

    #Dint = 1.0/(1.0j*(wp-wd)) #Qobj(1.0/(1.0j*(wp-wd)*diag(qeye(N**2))))# + diag(D))))

    #Hint = H.expm() #U*H*Uinv

    #Chi_temp(i,j) += (1.0/theta_steps)*1j*trace(reshape(tm_l*Lint*(p_l - p_r)*rho_ss_c,dim,dim))
    #exp1=correlation_2op_1t(H, None, wlist2, c_op_list, a, p, solver="es")
    #exp2=correlation_2op_1t(H, None, wlist2, c_op_list, p, a, solver="es", reverse=True)
    #exp1=correlation_2op_1t(H, None, wlist2, c_op_list, a, p_l-p_r, solver="es")

    #exp1=correlation_ss(H, wlist2, c_op_list, a, p)
    #exp2=correlation_ss(H, wlist2, c_op_list, p, a, reverse=True)
    exp1=spectrum(H, wlist2, c_op_list, a, p, solver="pi", use_pinv=False)
    exp2=spectrum(H, wlist2, c_op_list, p, a, solver="pi", use_pinv=False)
    return exp1-exp2
    return expect( a, final_state) #tm_l
Exemplo n.º 48
0
    def outfieldpropagator(self, blist, tlist, tau, c1=None, c2=None,
                           notrace=False):
        """
        Compute propagator for computing output field expectation values
        <O_n(tn)...O_2(t2)O_1(t1)> for times t1,t2,... and
        O_i = I, b_out, b_out^\dagger, b_loop, b_loop^\dagger

        Parameters
        ----------
        blist : array_like
            List of integers specifying the field operators:
            0: I (nothing)
            1: b_out
            2: b_out^\dagger
            3: b_loop
            4: b_loop^\dagger

        tlist : array_like
            list of corresponding times t1,..,tn at which to evaluate the field
            operators

        tau : float
            time-delay

        c1 : :class:`qutip.Qobj`
            system collapse operator that couples to the in-loop field in
            question (only needs to be specified if self.L1 has more than one
            element)

        c2 : :class:`qutip.Qobj`
            system collapse operator that couples to the output field in
            question (only needs to be specified if self.L2 has more than one
            element)

        notrace : bool {False}
            If this optional is set to True, a propagator is returned for a
            cascade of k systems, where :math:`(k-1) tau < t < k tau`.
            If set to False (default), a generalized partial trace is performed
            and a propagator for a single system is returned.

        Returns
        -------
        : :class:`qutip.Qobj`
            time-propagator for computing field correlation function
        """
        if c1 is None and len(self.L1) == 1:
            c1 = self.L1[0]
        else:
            raise ValueError('Argument c1 has to be specified when more than' +
                             'one collapse operator couples to the feedback' +
                             'loop.')
        if c2 is None and len(self.L2) == 1:
            c2 = self.L2[0]
        else:
            raise ValueError('Argument c1 has to be specified when more than' +
                             'one collapse operator couples to the feedback' +
                             'loop.')
        klist = []
        slist = []
        for t in tlist:
            klist.append(int(t/tau)+1)
            slist.append(t-(klist[-1]-1)*tau)
        kmax = max(klist)
        zipped = sorted(zip(slist, klist, blist))
        slist = [s for (s, k, b) in zipped]
        klist = [k for (s, k, b) in zipped]
        blist = [b for (s, k, b) in zipped]

        G1, E0 = _generator(kmax, self.H_S, self.L1, self.L2, self.S_matrix,
                            self.c_ops_markov)
        sprev = 0.
        E = E0
        for i, s in enumerate(slist):
            E = _integrate(G1, E, sprev, s, integrator=self.integrator,
                    parallel=self.parallel, opt=self.options)
            if klist[i] == 1:
                l1 = 0.*qt.Qobj()
            else:
                l1 = _localop(c1, klist[i]-1, kmax)
            l2 = _localop(c2, klist[i], kmax)
            if blist[i] == 0:
                superop = self.Id
            elif blist[i] == 1:
                superop = qt.spre(l1+l2)
            elif blist[i] == 2:
                superop = qt.spost(l1.dag()+l2.dag())
            elif blist[i] == 3:
                superop = qt.spre(l1)
            elif blist[i] == 4:
                superop = qt.spost(l1.dag())
            else:
                raise ValueError('Allowed values in blist are 0, 1, 2, 3 ' +
                                 'and 4.')
            superop.dims = E.dims
            E = superop*E
            sprev = s
        E = _integrate(G1, E, slist[-1], tau, integrator=self.integrator,
                parallel=self.parallel, opt=self.options)

        E.dims = E0.dims
        if not notrace:
            E = _genptrace(E, kmax)
        return E
Exemplo n.º 49
0
def lin_construct(O):
    Od = O.dag()
    L = 2. * spre(O) * spost(Od) - spre(Od * O) - spost(Od * O)
    return L