Exemplo n.º 1
0
def batch_gen(dicom_dataset):
    dicom_index = FilesIndex(path='./dicom/*', dirs=True)
    dicom_dataset = Dataset(dicom_index, batch_class=CTImagesMaskedBatch)

    create_blosc_dataset = dicom_dataset >> (
        Pipeline()
        .load(fmt='dicom')
        .dump(dst='./blosc', fmt='blosc',
              components=('images', 'origin', 'spacing'))
    )
    create_blosc_dataset.run(4)
    blosc_index = FilesIndex(path='./blosc/*', dirs=True)
    blosc_dataset = Dataset(blosc_index, batch_class=CTImagesMaskedBatch)
    yield blosc_dataset.gen_batch(2, n_epochs=None)
    print("Cleaning up generated blosc data...")
    shutil.rmtree('./blosc')
Exemplo n.º 2
0
def dicom_dataset():
    if os.path.exists('./dicom'):
        shutil.rmtree('./dicom')

    generate_dicom_scans('./dicom')

    index = FilesIndex(path='./dicom/*', dirs=True)
    dataset = Dataset(index, batch_class=CTImagesMaskedBatch)
    yield dataset
    print("Cleaning up generated dicom data...")
    shutil.rmtree('./dicom')
    def test_split_dump(self, dicom_dataset, nodules, histo):
        pipeline = split_dump('./temp_cancer', './temp_ncancer',
                              nodules, histo, fmt='dicom',
                              spacing=(1.7, 1.0, 1.0),
                              shape=(128, 128, 128), order=3,
                              padding='reflect', crop_size=(32, 64, 64))

        pipeline = (dicom_dataset >> pipeline)

        pipeline.next_batch(2)
        pipeline.next_batch(2)

        cancer_idx = FilesIndex(path='./temp_cancer/*', dirs=True)
        ncancer_idx = FilesIndex(path='./temp_ncancer/*', dirs=True)

        assert len(cancer_idx) > 0
        assert len(ncancer_idx) > 0

        shutil.rmtree('./temp_cancer')
        shutil.rmtree('./temp_ncancer')
def crops_datasets(dicom_dataset, nodules, histo):
    pipeline = split_dump('./cancer', './ncancer', nodules, histo,
                          fmt='dicom', spacing=(1.7, 1.0, 1.0),
                          shape=(128, 128, 128), order=3,
                          padding='reflect', crop_size=(32, 64, 64))

    pipeline = (dicom_dataset >> pipeline)

    pipeline.next_batch(2)

    cancer_idx = FilesIndex(path='./cancer/*', dirs=True)
    ncancer_idx = FilesIndex(path='./ncancer/*', dirs=True)

    cancer_set = Dataset(cancer_idx, batch_class=CTImagesMaskedBatch)
    ncancer_set = Dataset(ncancer_idx, batch_class=CTImagesMaskedBatch)

    yield cancer_set, ncancer_set

    shutil.rmtree('./cancer')
    shutil.rmtree('./ncancer')
Exemplo n.º 5
0
    def test_blosc_dump_sync(self, batch_with_nodules_and_masks, sync):
        _ = batch_with_nodules_and_masks.dump(dst='./dumped_blosc',  # noqa: F841
                                              fmt='blosc', sync=sync)
        blosc_index = FilesIndex(path='./dumped_blosc/*', dirs=True)
        blosc_dataset = Dataset(blosc_index, batch_class=CTImagesMaskedBatch)
        assert len(blosc_dataset) == len(batch_with_nodules_and_masks)

        batch = (  # noqa: F841
            blosc_dataset
            .next_batch(len(batch_with_nodules_and_masks))
            .load(fmt='blosc', sync=sync)
        )

        shutil.rmtree('./dumped_blosc')
Exemplo n.º 6
0
    def test_dicom_dump(self, batch_with_nodules_and_masks):
        _ = batch_with_nodules_and_masks.dump(dst='./dumped_dicoms',  # noqa: F841
                                              fmt='dicom')
        dicom_index = FilesIndex(path='./dumped_dicoms/*', dirs=True)
        dicom_dataset = Dataset(dicom_index, batch_class=CTImagesMaskedBatch)
        assert len(dicom_dataset) == len(batch_with_nodules_and_masks)

        batch = (  # noqa: F841
            dicom_dataset
            .next_batch(len(batch_with_nodules_and_masks))
            .load(fmt='dicom')
        )

        shutil.rmtree('./dumped_dicoms')
def test_create_crops(dicom_dataset, nodules):
    create_crops(dicom_dataset,
                 'dicom',
                 nodules,
                 None,
                 './test_crops',
                 config=get_config(config))

    cancer_idx = FilesIndex(path='./test_crops/original/cancer/*', dirs=True)
    ncancer_idx = FilesIndex(path='./test_crops/original/ncancer/*', dirs=True)

    cancer_set = Dataset(cancer_idx, batch_class=CTImagesMaskedBatch)
    ncancer_set = Dataset(ncancer_idx, batch_class=CTImagesMaskedBatch)

    assert len(cancer_set) != 0 and len(ncancer_set) != 0

    _ = (Pipeline(dataset=cancer_set).load(fmt='blosc',
                                           sync=True).next_batch(2))

    _ = (Pipeline(dataset=ncancer_set).load(fmt='blosc',
                                            sync=True).next_batch(2))

    shutil.rmtree('./test_crops')
Exemplo n.º 8
0
 def _check_scan(self, item):
     if item.fmt == 'raw':
         index = FilesIndex(path=item.scan_path,
                            no_ext=False, dirs=False)
         if len(index.indices) == 0:
             raise FileNotFoundError("File with given path does not exist")
         if any('.mhd' not in str(p) for p in index.indices):
             raise ValueError("File must have '.mhd' extension.")
     if item.fmt == 'dicom':
         if not (os.path.exists(item.scan_path) and os.path.isdir(item.scan_path)):
             raise FileNotFoundError("DICOM-directory " +
                                     "with given path does not exist.")
         for name in os.listdir(item.scan_path):
             path = os.path.join(item.scan_path, name)
             try:
                 _ = read_file(path)  # noqa: F841
             except Exception:
                 raise ValueError("Scans path must be" +
                                  " directory containing dicom files.")
Exemplo n.º 9
0
    number = str(i).zfill(6)
    path = 'D:/DATA20181008//' + number + '/conv'
    if os.path.isdir(path):
        fileList.append(path + '/' + os.listdir(path)[0])

pathlist = glob.glob(path)
for i in range(len(pathlist)):
    path = pathlist[i]

    path1, im = os.path.split(path)
    path2, conv = os.path.split(path1)
    path3, patient = os.path.split(path2)
    os.rename(path, path2 + '/' + conv + '/' + patient + '_' + im)

#ixs = np.array([['1.3.6.1.4.1.14519.5.2.1.6279.6001.312127933722985204808706697221']])
luna_index = FilesIndex(path=fileList)
luna_dataset = ds.Dataset(index=luna_index, batch_class=CTImagesCustomBatch)

try:
    import pydicom as dicom  # pydicom library was renamed in v1.0
except ImportError:
    import dicom as dicom

indexlist = np.zeros(214)
contrast = []
for i in range(214):
    os_, index = os.path.split(fileList[i])
    list_of_dicoms = dicom.dcmread(fileList[i])
    print(i)
    indexlist[i] = (int(index[:6]))
if not os.path.exists(LUNA_pre):
    os.makedirs(LUNA_pre)

string = ['080', '120', '190', 'conv']

for num in string:
    #start with1 energy

    fileList = []
    for i in range(0, 300):  #from 1 to number of scans
        number = str(i).zfill(6)
        path = 'D:/DATA20181008/' + number + '/' + num
        if os.path.isdir(path) == True:
            fileList.append(path + '/' + os.listdir(path)[0])

    luna_index = FilesIndex(path=fileList, sort=True)
    luna_dataset = ds.Dataset(index=luna_index,
                              batch_class=CTImagesCustomBatch)

    #load and normalize these images
    load_and_normalize = (
        Pipeline().load(fmt='dicom').unify_spacing(
            shape=(400, 512, 512), spacing=(2.0, 1.0, 1.0),
            padding='constant')  #equalizes the spacings 
        #from both images and mask
        .normalize_hu(min_hu=-1200, max_hu=600)
    )  #clips the HU values and linearly rescales them, values from grt team
    #  .apply_lung_mask(paddi

    Path = 'C:/Users/linde/Documents/PreprocessedImages1008CorrectConvs/Spacing(2x1x1)/0*'
    loadblosc = (Pipeline().load(fmt='blosc',
                                         n_epochs=1,
                                         drop_last=False)
    batch.dump(
        dst=LUNA_pre,
        components=['spacing', 'origin', 'images', 'segmentation', 'masks'])
    print(i)
    print(np.round((time.time() - start_time) / 60, 2))

slices.multi_slice_viewer(batchnew.images)
#get segmented images
Path = 'C:/Users/linde/Documents/PreprocessedImages1008CorrectConvs/Spacing(2x1x1)/SpacingNew/incorrect/*'
pipeline_loadblosc = (Pipeline().load(
    fmt='blosc',
    components=['spacing', 'origin', 'images', 'segmentation', 'masks']))

im_index = FilesIndex(path=Path, dirs=True)

batch_size = 1
ixs = np.array(['000274_IM000001'])
observed_scans = ds.Dataset(index=im_index.create_subset(ixs),
                            batch_class=CTImagesCustomBatch)
observed_scans = ds.Dataset(index=im_index, batch_class=CTImagesCustomBatch)

lunaline_segm = (observed_scans >> pipeline_loadblosc)
batch_segm = lunaline_segm.next_batch(batch_size=batch_size,
                                      shuffle=False,
                                      n_epochs=1,
                                      drop_last=False)
slices.multi_slice_viewer(batch_segm.masks)

slices.multi_slice_viewer(batch_segm.images)
Exemplo n.º 12
0
import pandas as pd
from radio import CTImagesMaskedBatch
from radio.dataset import FilesIndex, Dataset, Pipeline, F
from radio.models import DilatedNoduleNet
from radio.models.tf.losses import tversky_loss

nodules_df = pd.read_csv('/path/to/annotations.csv')
luna_index = FilesIndex(path='/path/to/LunaDataset/*.mhd', no_ext=True)
luna_dataset = Dataset(index=luna_index, batch_class=CTImagesMaskedBatch)

preprocessing = (Pipeline()
                 .load(fmt='raw')
                 .unify_spacing(shape=(384, 512, 512), spacing=(3.5, 2.0, 2.0)))
                 .fetch_nodules_info(nodules_df)
                 .create_mask()
                 .normalize_hu())

spacing_randomizer = lambda *args: 0.2 * np.random.uniform(size=3) + [3.5, 2.0, 2.0]
augmentation = (Pipeline()                 
                .sample_nodules(nodule_size=(48, 76, 76))
                .rotate(random=True, angle=30, mask=True)
                .unify_spacing(spacing=F(spacing_randomizer), shape=(32, 64, 64)))


vnet_config = {'loss': tversky_loss,
               'inputs': dict(images={'shape': (32, 64, 64, 1)},
                              labels={'name': 'targets', 'shape': (32, 64, 64, 1)})}
vnet_config['input_block/inputs'] = 'images'
model_training = (Pipeline()
                  .init_model(name='vnet', model_class=DilatedNoduleNet, config=vnet_config)
                  .train_model(name='vnet', feed_dict={'images': F(CTIMB.unpack, component='images'),
Exemplo n.º 13
0
    #makes folder for all savings
    LUNA_val = 'C:/Users/s120116/Documents/Preprocessed_Images/' + subset + ' - split/validate'
    LUNA_train = 'C:/Users/s120116/Documents/Preprocessed_Images/' + subset + ' - split/training'

    LUNA_test = 'C:/Users/s120116/Documents/Preprocessed_Images/validationData/'
    if not os.path.exists(LUNA_test):
        os.makedirs(LUNA_test)

#    if not os.path.exists(LUNA_val):
#        os.makedirs(LUNA_val)
#
#    if not os.path.exists(LUNA_train):
#        os.makedirs(LUNA_train)

#set up dataset structure
    luna_index = FilesIndex(path=LUNA_MASK,
                            no_ext=True)  # preparing indexing structure
    luna_dataset = ds.Dataset(index=luna_index,
                              batch_class=CTImagesCustomBatch)

    #Split dataset in training and validation part ----------------------------------------------

    #define path to save or load index files
    #    if Split:
    #        # If dataset has already been split: make two subsets from indices for testing vs training
    #        path='C:/Users/s120116/Documents/'+subset+' - split/'
    #
    #        index_train=np.load(os.path.join(path, 'trainindex.npy'))
    #        luna_index_train=luna_index.create_subset(index_train)
    #        dataset_train= ds.Dataset(index=luna_index_train, batch_class=CTImagesCustomBatch)
    #
    #        index_val=np.load(os.path.join(path,'testindex.npy'))
import CTsliceViewer as slices

save_folder = 'C:/Users/linde/Documents/testImages'
if not os.path.exists(save_folder):
    os.makedirs(save_folder)

#from each dicom folder, add one file to filesindex. This makes sure that with next batch, the next
#dicom scan is loaded and not the next slice (file)
fileList = []
for i in range(1, 3):  #from 1 to number of scans
    number = '00' + str(i)
    path = 'C:/Users/linde/Documents/DAta/DATA/Use/' + number + '/conventional'
    fileList.append(path + '/' + os.listdir(path)[0])

#set up dataset structure
luna_index = FilesIndex(path=fileList, no_ext=False,
                        sort=True)  # preparing indexing structure

luna_dataset = ds.Dataset(index=luna_index, batch_class=CTImagesCustomBatch)

#load pipeline
load_LUNA = (Pipeline().load(fmt='dicom').get_lung_mask(rad=10))

lunaline = luna_dataset >> load_LUNA.dump(
    dst=save_folder, components=['spacing', 'origin', 'images', 'masks'])

#get next batch
list_int = []
i = 0
while True:
    try:
        batch = lunaline.next_batch(batch_size=1, shuffle=False, n_epochs=1)
    number = str(i).zfill(6)
    path = 'D:/DATA20181008/' + number + '/' + '060'
    if os.path.isdir(path) == True:
        fileList_060.append(path)  #+ '/' + os.listdir(path)[0])
    path = 'D:/DATA20181008/' + number + '/' + '190'
    if os.path.isdir(path) == True:
        filelist_190.append(path)  #+ '/' + os.listdir(path)[0])

LUNA_pre = 'C:/Users/linde/Documents/CS_PE_seperatedtest'

if not os.path.exists(LUNA_pre):
    os.makedirs(LUNA_pre)

#set up dataset structure

luna_index_low = FilesIndex(path=fileList_060, sort=True,
                            dirs=True)  # preparing indexing structure
luna_dataset_low = ds.Dataset(index=luna_index_low, batch_class=CTICB)

luna_index_high = FilesIndex(path=filelist_190, sort=True,
                             dirs=True)  # preparing indexing structure
luna_dataset_high = ds.Dataset(index=luna_index_high, batch_class=CTICB)

cancer_cropline = load_pipeline()

line_low = luna_dataset_low >> cancer_cropline
line_high = luna_dataset_high >> cancer_cropline

for i in range(len(luna_dataset_low)):
    if luna_dataset_high.index.indices[i] != luna_dataset_low.index.indices[i]:
        print('error!' + ' high :' + luna_dataset_high.index.indices[i] +
              ' low: ' + luna_dataset_low.index.indices[i])
Exemplo n.º 16
0
MERGED_NODULES_PATH = './merged_nodules.pkl'
HISTO_PATH = './histo.pkl'
NODULE_CONFIDENCE_THRESHOLD = 0.02
TRAIN_SHARE = 0.9
CANCEROUS_CROPS_PATH = '/notebooks/data/CT/npcmr_crops/train/cancerous'
NONCANCEROUS_CROPS_PATH = '/notebooks/data/CT/npcmr_crops/train/noncancerous'

# read df containing info about nodules on scans
dataset_info = (radio.annotation.read_dataset_info(NPCMR_GLOB,
                                                   index_col='seriesid',
                                                   filter_by_min_spacing=True,
                                                   load_origin=False))

# set up Index and Dataset for npcmr
ct_index = FilesIndex(dataset_info.index.values,
                      paths=dict(dataset_info.loc[:, 'ScanPath']),
                      dirs=True)
ct_dataset = Dataset(ct_index, batch_class=CTImagesMaskedBatch)

# read dumped annots
with open(MERGED_NODULES_PATH, 'rb') as file:
    merged = pkl.load(file)

# filter nodules by confidences
filtered = merged[merged.confidence > NODULE_CONFIDENCE_THRESHOLD]

ct_dataset.cv_split(TRAIN_SHARE)

# read histo of nodules locs
with open(HISTO_PATH, 'rb') as file:
    histo = pkl.load(file)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import CTsliceViewer as slices
import scipy 



nodules_df_2 = pd.read_csv('C:/Users/s120116/OneDrive - TU Eindhoven/TUE/Afstuderen/CSVFILES/annotations.csv')
     
LUNA_MASK = 'C:/Users/s120116/Documents/LUNAsubsets/'+subset+'/*.mhd' 
path='C:/Users/s120116/Documents/LUNAsubsets/subset*/*.mhd'
path='C:/Users/s120116/Documents/Preprocessed_Images/subset2 - split/training/*'
sub='subset0'

   
luna_index_train = FilesIndex(path=path, no_ext=True)      


  # preparing indexing structure


ixs = np.array(['1.3.6.1.4.1.14519.5.2.1.6279.6001.750792629100457382099842515038'])


two_scans_dataset = ds.Dataset(index=luna_index_train.create_subset(ixs), batch_class=CTICB)
luna_dataset_train = ds.Dataset(index=luna_index_train, batch_class=CTICB)


nodules_malignancy=pd.read_excel('C:/Users/s120116/OneDrive - TU Eindhoven/TUE/Afstuderen/CSVFILES/all_info_averaged_observer_corrected2.xlsx')

pipeline=   (Pipeline()
nodules_malignancy = pd.read_excel(
    'C:/Users/s120116/OneDrive - TU Eindhoven/TUE/Afstuderen/CSVFILES/all_info_averaged_observer_corrected2.xlsx'
)

path = 'C:/Users/s120116/Documents/Preprocessed_Images/'
SaveFolder = 'Crops(16x32x32)CompleteDataset'

for sub in sublist:
    print(sub)

    #define folders in which validation and training data is
    LUNA_val = path + sub + ' - split/validate/*'
    LUNA_train = path + sub + ' - split/training/*'

    #set up dataset structure
    luna_index_val = FilesIndex(path=LUNA_val,
                                dirs=True)  # preparing indexing structure
    luna_dataset_val = ds.Dataset(index=luna_index_val, batch_class=CTICB)

    luna_index_train = FilesIndex(path=LUNA_train,
                                  dirs=True)  # preparing indexing structure
    luna_dataset_train = ds.Dataset(index=luna_index_train, batch_class=CTICB)

    def make_folder(folderlist=[]):
        for folder in folderlist:
            if not os.path.exists(folder):
                os.makedirs(folder)

    def load_pipeline(nodules_df):
        pipeline = (Pipeline().load(
            fmt='blosc',
            components=[
#input --------------------------------------------------------------------------------
#put here path with data
data_path = 'D:/OnlyConv/'  #folder containing for each dicom file a folder with all slices (files)

#--------------------------------------------------------------------------------------------

savepath = '../../../ResultingData/PreprocessedImages'

#makes folder for all savings
if not os.path.exists(savepath):
    os.makedirs(savepath)

#create filesindex to iterate over all files
folder_path = os.path.join(data_path, '*')
scan_index = FilesIndex(path=folder_path, dirs=True)
scan_dataset = ds.Dataset(index=scan_index, batch_class=CTICB)

#to check index / dataset use: luna_index.indices or scan_dataset.index.indices
#should contain list of names of folders (for each scan a folder), names should be different for each scan

#make pipeline to load, equalize spacing and normalize the data
load_and_preprocess = (
    Pipeline().load(fmt='dicom')  #loads all slices from folder in dataset
    .unify_spacing(shape=(400, 512, 512),
                   spacing=(2.0, 1.0, 1.0),
                   padding='constant')  #equalizes the spacings
    .normalize_hu(min_hu=-1200,
                  max_hu=600)  #clips the HU values and linearly rescales them
)
#1.3.6.1.4.1.14519.5.2.1.6279.6001.339546614783708685476232944897
#1.3.6.1.4.1.14519.5.2.1.6279.6001.228511122591230092662900221600- validate


sublist=['subset1', 'subset2', 'subset3', 'subset4','subset5', 'subset6', 'subset7']
subset='subset4'

  #Define data folder (LUNA_mask)
LUNA_MASK = 'C:/Users/s120116/Documents/Allfolders/'+subset+'/*.mhd'    # set glob-mask for scans from Luna-dataset here

#makes folder for all savings
LUNA_val='C:/Users/s120116/Documents/Preprocessed_Images/'+subset+' - split/validate' 
LUNA_train= 'C:/Users/s120116/Documents/Preprocessed_Images/'+subset+' - split/training' 


luna_index = FilesIndex(path=LUNA_MASK, no_ext=True) 


ixs = np.array([

'1.3.6.1.4.1.14519.5.2.1.6279.6001.228511122591230092662900221600'])
fix_ds = ds.Dataset(index=luna_index.create_subset(ixs), batch_class=CTImagesCustomBatch) 

 #make pipeline to load and segment, saves segmentations in masks
load_and_segment     = (Pipeline()
                        .load(fmt='raw')
                        .get_lung_mask(rad=15))
                    #  .unify_spacing_withmask(shape=(400,512,512), spacing=(2.0,1.0,1.0),padding='constant') #equalizes the spacings 
                              #from both images and mask
                     # .normalize_hu(min_hu=-1200, max_hu=600) #clips the HU values and linearly rescales them, values from grt team
                      #.apply_lung_mask(padding=170))
Exemplo n.º 21
0
data_path='D:/OnlyConv/' #folder containing for each dicom file a folder with all slices (files)
nodules_path='C:/Users/linde/OneDrive - TU Eindhoven/TUE/Afstuderen/CSVFILES/AnnotatiesPim/nodule_data_adapted.xlsx'

# Preprocessing Images--------------------------------------------------------------------------------------------


savepath_preprocess='../../../ResultingData/PreprocessedImages' 

#makes folder for all savings
if not os.path.exists(savepath_preprocess):
    os.makedirs(savepath_preprocess)
    

#create filesindex to iterate over all files
folder_path=os.path.join(data_path, '*')
scan_index=FilesIndex(path=folder_path,dirs=True)
scan_dataset = ds.Dataset(index=scan_index, batch_class=CTICB)

#to check index / dataset use: luna_index.indices or scan_dataset.index.indices
#should contain list of names of folders (for each scan a folder), names should be different for each scan    

#make pipeline to load, equalize spacing and normalize the data
load_and_preprocess     = (Pipeline()
                        .load(fmt='dicom') #loads all slices from folder in dataset
                        .unify_spacing(shape=(400,512,512), spacing=(2.0,1.0,1.0),padding='constant')#equalizes the spacings
                       .normalize_hu(min_hu=-1200, max_hu=600) #clips the HU values and linearly rescales them
                      )

##pass training dataset through pipeline
preprocessing_pipeline=(scan_dataset>> load_and_preprocess.dump(dst=savepath_preprocess,components=['images', 'spacing', 'origin' ]))
Exemplo n.º 22
0
import os
from CTImagesCustomBatch import CTImagesCustomBatch
import CTsliceViewer as slices
import glob
import time

save_path = 'C:/Users/linde/Documents/PreprocessedImages_CS_PE/'

if not os.path.exists(save_path):
    os.makedirs(save_path)

for string in ['PE']:  #still do PE

    path_cs = "C:/Users/linde/Documents/CS_PE_seperated/" + string + "/*"

    cs_index = FilesIndex(path=path_cs, dirs=True, sort=True)
    cs_dataset = ds.Dataset(index=cs_index, batch_class=CTImagesCustomBatch)

    #load and normalize these images
    load_and_normalize = (
        Pipeline().load(
            fmt='blosc',
            components=['spacing', 'origin', 'images']).unify_spacing(
                shape=(400, 512, 512),
                spacing=(2.0, 1.0, 1.0),
                padding='constant')  #equalizes the spacings 
        #from both images and mask
        .normalize_hu(min_hu=-1200, max_hu=600)
    )  #clips the HU values and linearly rescales them, values from grt team
    #  .apply_lung_mask(paddi
Exemplo n.º 23
0
sys.path.append('../../')
from radio import CTImagesMaskedBatch as CTIMB
from radio.dataset import Dataset, Pipeline, FilesIndex, F, V, B, C, Config, L
from radio.dataset.research import Research, Option, KV
from radio.dataset.models.tf import UNet, VNet

# paths to scans in blosc and annotations-table
PATH_SCANS = './blosc/*'
PATH_ANNOTS = './annotations.csv'

# directory for saving models
MODELS_DIR = './trained_models/'

# dataset and annotations-table
index = FilesIndex(path=PATH_SCANS, dirs=True, no_ext=False)
dataset = Dataset(index=index, batch_class=CTIMB)
dataset.split(0.9, shuffle=120)
nodules = pd.read_csv(PATH_ANNOTS)


def train(batch,
          model='net',
          minibatch_size=8,
          mode='max',
          depth=6,
          stride=2,
          start=0,
          channels=3):
    """ Custom train method. Train a model in minibatches of xips, fetch loss and prediction.
    """