Exemplo n.º 1
0
    def test_untrainable_batch_norm_vars_not_trainable(self):
        input_layer = tf.placeholder(tf.float32, shape=(None, 1))
        scope_name = 'test_bn_scope'

        with tf.variable_scope(scope_name):
            tf_util.batch_norm(input_layer, True)
        with tf.variable_scope(scope_name, reuse=True) as bn_scope:
            tf_util.batch_norm(input_layer, False)

        self.sess.run(tf.global_variables_initializer())
        trainable_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
        bn_params = tf_util.get_untrainable_batch_norm_vars(bn_scope)

        self.assertEqual(0, len(set(trainable_params).intersection(bn_params)))
Exemplo n.º 2
0
    def test_batch_norm_pop_stats_decays_correctly_2_itrs(self):
        in_size = 1
        input_layer = tf.placeholder(tf.float32, shape=(None, in_size))
        bn_config = tf_util.BatchNormConfig(decay=0.5)
        scope_name = 'test_bn_scope'

        with tf.variable_scope(scope_name):
            output_train, batch_ops = tf_util.batch_norm(
                input_layer, True, batch_norm_config=bn_config)

        input_values = np.array([[1, 2, 3, 4]]).T
        # variance([1, 2, 3, 4]) = 1.25
        # mean([1, 2, 3, 4]) = 2.5

        input_values2 = np.array([[2, 4]]).T
        # variance([2, 4]) = 1
        # mean([2, 4]) = 3

        self.sess.run(tf.global_variables_initializer())
        mean = None
        variance = None
        for values in [input_values, input_values2]:
            training_values, mean, variance = self.sess.run([
                output_train, batch_ops.update_pop_mean_op,
                batch_ops.update_pop_var_op
            ], {input_layer: values})
        self.assertAlmostEqual(mean[0], ((2.5 / 2) + 3) / 2)
        self.assertAlmostEqual(variance[0], (((1.25 + 1) / 2) + 1) / 2)
Exemplo n.º 3
0
    def _process_layer(self, previous_layer, scope_name="process_layer"):
        """
        This should be done called between every layer, i.e.

        a = self.process_layer(linear(x))
        b = self.process_layer(linear(relu(a)))
        output = linear(relu(b))

        This method should NOT be called on the output.

        If batch norm is disabled, this just returns `previous_layer`
        immediately.

        If batch norm is enabled, this returns a layer with bn enabled,
        either for training or eval based on self._is_bn_in_training_mode

        :param previous_layer: Either the input layer or the output to a
        previous call to `_process_layer`
        :param scope_name: Scope name for any variables that may be created
        while processing the layer
        :return: If batch norm is disabled, this returns previous_layer.
        Otherwise, it returns a tuple (batch norm'd layer for training,
        batch norm'd layer for eval)
        """
        if not self._batch_norm:
            return previous_layer

        with tf.variable_scope(scope_name):
            processed_layer, _ = tf_util.batch_norm(
                previous_layer,
                is_training=self._is_bn_in_training_mode,
                batch_norm_config=self._batch_norm_config,
            )
            return processed_layer
Exemplo n.º 4
0
    def test_batch_norm_eval_uses_pop_stats_correctly(self):
        in_size = 1
        input_layer = tf.placeholder(tf.float32, shape=(None, in_size))
        epsilon = 1e-5
        bn_config = tf_util.BatchNormConfig(decay=0, epsilon=epsilon)
        scope_name = 'test_bn_scope'

        with tf.variable_scope(scope_name) as scope:
            output_train, batch_ops = tf_util.batch_norm(
                input_layer, True, batch_norm_config=bn_config)
            scope.reuse_variables()
            output_eval = tf_util.batch_norm(input_layer,
                                             False,
                                             batch_norm_config=bn_config)[0]

        input_values = np.array([[1, 2, 3, 4]]).T
        # variance([1, 2, 3, 4]) = 1.25
        # mean([1, 2, 3, 4]) = 2.5

        self.sess.run(tf.global_variables_initializer())
        training_values, mean, variance, gamma, beta = self.sess.run(
            [
                output_train,
                batch_ops.update_pop_mean_op,
                batch_ops.update_pop_var_op,
                batch_ops.scale,
                batch_ops.offset,
            ], {input_layer: input_values})
        self.assertEqual(mean[0], 2.5)
        self.assertEqual(variance[0], 1.25)
        self.assertEqual(gamma[0], 1)
        self.assertEqual(beta[0], 0)
        expected_eval_values = np.array([[-2, 2]]).T
        expected_pop_mean = 2.5
        expected_pop_var = 1.25
        eval_input_values = (
            expected_eval_values * np.sqrt(expected_pop_var + epsilon) +
            expected_pop_mean)
        eval_values = self.sess.run(output_eval,
                                    {input_layer: eval_input_values})
        self.assertNpArraysAlmostEqual(expected_eval_values, eval_values)
Exemplo n.º 5
0
    def test_batch_norm_untrained_is_a_noop(self):
        in_size = 1
        input_layer = tf.placeholder(tf.float32, shape=(None, in_size))
        bn_config = tf_util.BatchNormConfig(epsilon=0., decay=0.5)
        scope_name = 'test_bn_scope'

        with tf.variable_scope(scope_name) as scope:
            output_train = tf_util.batch_norm(input_layer,
                                              True,
                                              batch_norm_config=bn_config)[0]
            scope.reuse_variables()
            output_eval = tf_util.batch_norm(input_layer,
                                             False,
                                             batch_norm_config=bn_config)[0]

        input_values = np.array([[-2], [2]])

        self.sess.run(tf.global_variables_initializer())
        eval_values, _ = self.sess.run([output_eval, output_train],
                                       {input_layer: input_values})
        expected_eval_values = np.array([[-2], [2]])
        self.assertNpArraysEqual(eval_values, expected_eval_values)
Exemplo n.º 6
0
    def test_get_untrainable_batch_norm_vars(self):
        input_layer = tf.placeholder(tf.float32, shape=(None, 1))
        scope_name = 'test_bn_scope'

        with tf.variable_scope(scope_name) as bn_scope:
            output_train, bn_ops = tf_util.batch_norm(
                input_layer,
                True,
            )

        update_ops = [bn_ops.pop_mean, bn_ops.pop_var]
        update_ops_v2 = tf_util.get_untrainable_batch_norm_vars(bn_scope)

        self.assertEqual(set(update_ops), set(update_ops_v2))
Exemplo n.º 7
0
    def test_batch_norm_whitens_training_data(self):
        in_size = 1
        input_layer = tf.placeholder(tf.float32, shape=(None, in_size))
        bn_config = tf_util.BatchNormConfig(epsilon=0.)
        scope_name = 'test_bn_scope'

        with tf.variable_scope(scope_name):
            output_train = tf_util.batch_norm(input_layer,
                                              True,
                                              batch_norm_config=bn_config)[0]

        input_values = np.array([[-2], [2]])

        self.sess.run(tf.global_variables_initializer())
        training_values = self.sess.run(output_train,
                                        {input_layer: input_values})
        expected_training_values = np.array([[-1], [1]])
        self.assertNpArraysEqual(training_values, expected_training_values)
Exemplo n.º 8
0
    def test_scope_does_not_affect_get_batch_norm_update_pop_stats_ops(self):
        scope_name = 'test_bn_scope'

        with tf.variable_scope('test'):
            with tf.variable_scope('foo'):
                input_layer = tf.placeholder(tf.float32, shape=(None, 1))
            with tf.variable_scope(scope_name) as bn_scope:
                output_train, bn_ops = tf_util.batch_norm(
                    input_layer,
                    True,
                )

        with tf.variable_scope('bar'):
            update_ops = bn_ops.update_pop_stats_ops
        with tf.variable_scope('zoo'):
            update_ops_v2 = tf_util.get_batch_norm_update_pop_stats_ops(
                bn_scope)

        self.assertEqual(set(update_ops), set(update_ops_v2))
Exemplo n.º 9
0
    def test_batch_norm_pop_stats_are_computed_correctly(self):
        in_size = 1
        input_layer = tf.placeholder(tf.float32, shape=(None, in_size))
        bn_config = tf_util.BatchNormConfig(decay=0.)
        scope_name = 'test_bn_scope'

        with tf.variable_scope(scope_name):
            output_train, batch_ops = tf_util.batch_norm(
                input_layer, True, batch_norm_config=bn_config)

        input_values = np.array([[1, 2, 3, 4]]).T
        # variance([1, 2, 3, 4]) = 1.25
        # mean([1, 2, 3, 4]) = 2.5

        self.sess.run(tf.global_variables_initializer())
        training_values, mean, variance = self.sess.run(
            [
                output_train, batch_ops.update_pop_mean_op,
                batch_ops.update_pop_var_op
            ], {input_layer: input_values})
        self.assertAlmostEqual(mean[0], 2.5)
        self.assertAlmostEqual(variance[0], 1.25)