Exemplo n.º 1
0
def test_ffmodel_for_atari() -> None:
    atari = gym.make("BreakoutNoFrameskip-v0")
    acvp_netfn = models.prepare_ff()
    d = Device()
    acvp_net = acvp_netfn((3, 210, 160), 4, d)
    states, actions = [], []
    atari.reset()
    for _ in range(10):
        s, _, _, _ = atari.step(0)
        states.append(s.transpose(2, 0, 1))
        actions.append(0)
    states = d.tensor(states)
    actions = d.tensor(actions, dtype=torch.long)
    s_decoded = acvp_net(states, actions)
    assert tuple(s_decoded.shape) == (10, 3, 210, 160)
Exemplo n.º 2
0
def test_dim(net_gen: callable, input_dim: tuple) -> None:
    device = Device()
    vae_net = net_gen(input_dim, ACTION_DIM, device=device)
    batch = torch.randn(BATCH_SIZE, *input_dim)
    with torch.no_grad():
        vae, policy, value = vae_net(device.tensor(batch))
    assert vae.x.shape == torch.Size((BATCH_SIZE, *input_dim))
    assert policy.dist.probs.shape == torch.Size((BATCH_SIZE, ACTION_DIM))
    assert value.shape == torch.Size((BATCH_SIZE, ))
    print(vae_net)