def _ImposeVelocityLimit(curve, vm): """_ImposeVelocityLimit imposes the given velocity limit to the ParabolicCurve. In case the velocity limit cannot be satisfied, this function will return an empty ParabolicCurve. """ # Check types if type(vm) is not mp.mpf: vm = mp.mpf("{:.15e}".format(vm)) # Check inputs assert (vm > zero) assert (len(curve) == 2) assert (Add(curve[0].a, curve[1].a) == zero) if Sub(Abs(curve[0].v0), vm) > epsilon: # Initial velocity violates the constraint return ParabolicCurve() if Sub(Abs(curve[1].v1), vm) > epsilon: # Final velocity violates the constraint return ParabolicCurve() vp = curve[1].v0 if Abs(vp) <= vm: # Velocity limit is not violated return curve # h = Sub(Abs(vp), vm) # t = mp.fdiv(h, Abs(curve[0].a)) ramp0, ramp1 = curve h = Sub(Abs(vp), vm) t = mp.fdiv(h, Abs(ramp0.a)) # import IPython; IPython.embed() ramps = [] if IsEqual(Abs(ramp0.v0), vm) and (mp.sign(ramp0.v0) == mp.sign(vp)): assert (IsEqual(ramp0.duration, t)) # check soundness else: newRamp0 = Ramp(ramp0.v0, ramp0.a, Sub(ramp0.duration, t), ramp0.x0) ramps.append(newRamp0) nom = h**2 denom = Mul(Abs(curve[0].a), vm) newRamp1 = Ramp(Mul(mp.sign(vp), vm), zero, Sum([t, t, mp.fdiv(nom, denom)]), curve.x0) ramps.append(newRamp1) if IsEqual(Abs(ramp1.v1), vm) and (mp.sign(ramp1.v1) == mp.sign(vp)): assert (IsEqual(ramp1.duration, t)) # check soundness else: newRamp2 = Ramp(Mul(mp.sign(vp), vm), ramp1.a, Sub(ramp1.duration, t)) ramps.append(newRamp2) return ParabolicCurve(ramps)
def _Interpolate1DNoVelocityLimit(x0, x1, v0, v1, am): # Check types if type(x0) is not mp.mpf: x0 = mp.mpf("{:.15e}".format(x0)) if type(x1) is not mp.mpf: x1 = mp.mpf("{:.15e}".format(x1)) if type(v0) is not mp.mpf: v0 = mp.mpf("{:.15e}".format(v0)) if type(v1) is not mp.mpf: v1 = mp.mpf("{:.15e}".format(v1)) if type(am) is not mp.mpf: am = mp.mpf("{:.15e}".format(am)) # Check inputs assert (am > zero) # Check for an appropriate acceleration direction of the first ramp d = Sub(x1, x0) dv = Sub(v1, v0) difVSqr = Sub(v1**2, v0**2) if Abs(dv) < epsilon: if Abs(d) < epsilon: # Stationary ramp ramp0 = Ramp(zero, zero, zero, x0) return ParabolicCurve([ramp0]) else: dStraight = zero else: dStraight = mp.fdiv(difVSqr, Prod([2, mp.sign(dv), am])) if IsEqual(d, dStraight): # With the given distance, v0 and v1 can be directly connected using max/min # acceleration. Here the resulting profile has only one ramp. a0 = mp.sign(dv) * am ramp0 = Ramp(v0, a0, mp.fdiv(dv, a0), x0) return ParabolicCurve([ramp0]) sumVSqr = Add(v0**2, v1**2) sigma = mp.sign(Sub(d, dStraight)) a0 = sigma * am # acceleration of the first ramp vp = sigma * mp.sqrt(Add(Mul(pointfive, sumVSqr), Mul(a0, d))) t0 = mp.fdiv(Sub(vp, v0), a0) t1 = mp.fdiv(Sub(vp, v1), a0) ramp0 = Ramp(v0, a0, t0, x0) assert (IsEqual(ramp0.v1, vp)) # check soundness ramp1 = Ramp(vp, Neg(a0), t1) curve = ParabolicCurve([ramp0, ramp1]) assert (IsEqual(curve.d, d)) # check soundness return curve
def InterpolateZeroVelND(x0Vect, x1Vect, vmVect, amVect, delta=zero): """Interpolate a trajectory connecting two waypoints, x0Vect and x1Vect. Velocities at both waypoints are zeros. """ ndof = len(x0Vect) assert (ndof == len(x1Vect)) assert (ndof == len(vmVect)) assert (ndof == len(amVect)) # Convert all vector elements into mp.mpf (if necessary) x0Vect_ = ConvertFloatArrayToMPF(x0Vect) x1Vect_ = ConvertFloatArrayToMPF(x1Vect) vmVect_ = ConvertFloatArrayToMPF(vmVect) amVect_ = ConvertFloatArrayToMPF(amVect) dVect = x1Vect - x0Vect if type(delta) is not mp.mpf: delta = mp.mpf("{:.15e}".format(delta)) vMin = inf # the tightest velocity bound aMin = inf # the tightest acceleration bound for i in range(ndof): if not IsEqual(x1Vect[i], x0Vect[i]): vMin = min(vMin, vmVect[i] / Abs(dVect[i])) aMin = min(aMin, amVect[i] / Abs(dVect[i])) if (not (vMin < inf and aMin < inf)): # dVect is zero. curvesnd = ParabolicCurvesND() curvesnd.SetConstant(x0Vect_, 0) return curvesnd if delta == zero: sdProfile = Interpolate1D( zero, one, zero, zero, vMin, aMin) # parabolic ramp (velocity profile sd(t)) else: # Not handle interpolation with switch-time constraints yet raise NotImplementedError # Scale each DOF according to the obtained sd-profile curves = [ParabolicCurve() for _ in range(ndof)] # a list of (empty) parabolic curves for sdRamp in sdProfile: aVect = sdRamp.a * dVect v0Vect = sdRamp.v0 * dVect dur = sdRamp.duration for j in range(ndof): ramp = Ramp(v0Vect[j], aVect[j], dur, x0Vect[j]) curve = ParabolicCurve([ramp]) curves[j].Append(curve) for (i, curve) in enumerate(curves): curve.SetInitialValue(x0Vect[i]) curvesnd = ParabolicCurvesND(curves) return curvesnd
def Interpolate1DFixedDuration(x0, x1, v0, v1, newDuration, vm, am): x0 = ConvertFloatToMPF(x0) x1 = ConvertFloatToMPF(x1) v0 = ConvertFloatToMPF(v0) v1 = ConvertFloatToMPF(v1) vm = ConvertFloatToMPF(vm) am = ConvertFloatToMPF(am) newDuration = ConvertFloatToMPF(newDuration) log.debug("\nx0 = {0}; x1 = {1}; v0 = {2}; v1 = {3}; vm = {4}; am = {5}; newDuration = {6}".\ format(mp.nstr(x0, n=_prec), mp.nstr(x1, n=_prec), mp.nstr(v0, n=_prec), mp.nstr(v1, n=_prec), mp.nstr(vm, n=_prec), mp.nstr(am, n=_prec), mp.nstr(newDuration, n=_prec))) # Check inputs assert (vm > zero) assert (am > zero) if (newDuration < -epsilon): return ParabolicCurve() if (newDuration <= epsilon): # Check if this is a stationary trajectory if (FuzzyEquals(x0, x1, epsilon) and FuzzyEquals(v0, v1, epsilon)): ramp0 = Ramp(v0, 0, 0, x0) newCurve = ParabolicCurve(ramp0) return newCurve else: # newDuration is too short to any movement to be made return ParabolicCurve() d = Sub(x1, x0) # First assume no velocity bound -> re-interpolated trajectory will have only two ramps. # Solve for a0 and a1 (the acceleration of the first and the last ramps). # a0 = A + B/t0 # a1 = A + B/(t - t0) # where t is the (new) total duration, t0 is the (new) duration of the first ramp, and # A = (v1 - v0)/t # B = (2d/t) - (v0 + v1). newDurInverse = mp.fdiv(one, newDuration) A = Mul(Sub(v1, v0), newDurInverse) B = Sub(Prod([mp.mpf('2'), d, newDurInverse]), Add(v0, v1)) interval0 = iv.mpf([zero, newDuration]) # initial interval for t0 # Now consider the interval(s) computed from a0's constraints sum1 = Neg(Add(am, A)) sum2 = Sub(am, A) C = mp.fdiv(B, sum1) D = mp.fdiv(B, sum2) log.debug("\nA = {0}; \nB = {1}; \nC = {2}; \nD = {3}; \nsum1 = {4}; \nsum2 = {5};".\ format(mp.nstr(A, n=_prec), mp.nstr(B, n=_prec), mp.nstr(C, n=_prec), mp.nstr(D, n=_prec), mp.nstr(sum1, n=_prec), mp.nstr(sum2, n=_prec))) if (sum1 > zero): # This implied that the duration is too short log.debug("the given duration ({0}) is too short.".format(newDuration)) return ParabolicCurve() if (sum2 < zero): # This implied that the duration is too short log.debug("the given duration ({0}) is too short.".format(newDuration)) return ParabolicCurve() if IsEqual(sum1, zero): raise NotImplementedError # not yet considered elif sum1 > epsilon: log.debug("sum1 > 0. This implies that newDuration is too short.") return ParabolicCurve() else: interval1 = iv.mpf([C, inf]) if IsEqual(sum2, zero): raise NotImplementedError # not yet considered elif sum2 > epsilon: interval2 = iv.mpf([D, inf]) else: log.debug("sum2 < 0. This implies that newDuration is too short.") return ParabolicCurve() if Sub(interval2.a, interval1.b) > epsilon or Sub(interval1.a, interval2.b) > epsilon: # interval1 and interval2 do not intersect each other return ParabolicCurve() # interval3 = interval1 \cap interval2 : valid interval for t0 computed from a0's constraints interval3 = iv.mpf( [max(interval1.a, interval2.a), min(interval1.b, interval2.b)]) # Now consider the interval(s) computed from a1's constraints if IsEqual(sum1, zero): raise NotImplementedError # not yet considered elif sum1 > epsilon: log.debug("sum1 > 0. This implies that newDuration is too short.") return ParabolicCurve() else: interval4 = iv.mpf([Neg(inf), Add(C, newDuration)]) if IsEqual(sum2, zero): raise NotImplementedError # not yet considered elif sum2 > epsilon: interval5 = iv.mpf([Neg(inf), Add(D, newDuration)]) else: log.debug("sum2 < 0. This implies that newDuration is too short.") return ParabolicCurve() if Sub(interval5.a, interval4.b) > epsilon or Sub(interval4.a, interval5.b) > epsilon: log.debug("interval4 and interval5 do not intersect each other") return ParabolicCurve() # interval6 = interval4 \cap interval5 : valid interval for t0 computed from a1's constraints interval6 = iv.mpf( [max(interval4.a, interval5.a), min(interval4.b, interval5.b)]) # import IPython; IPython.embed() if Sub(interval3.a, interval6.b) > epsilon or Sub(interval6.a, interval3.b) > epsilon: log.debug("interval3 and interval6 do not intersect each other") return ParabolicCurve() # interval7 = interval3 \cap interval6 interval7 = iv.mpf( [max(interval3.a, interval6.a), min(interval3.b, interval6.b)]) if Sub(interval0.a, interval7.b) > epsilon or Sub(interval7.a, interval0.b) > epsilon: log.debug("interval0 and interval7 do not intersect each other") return ParabolicCurve() # interval8 = interval0 \cap interval7 : valid interval of t0 when considering all constraints (from a0 and a1) interval8 = iv.mpf( [max(interval0.a, interval7.a), min(interval0.b, interval7.b)]) # import IPython; IPython.embed() # We choose the value t0 (the duration of the first ramp) by selecting the mid point of the # valid interval of t0. t0 = _SolveForT0(A, B, newDuration, interval8) if t0 is None: # The fancy procedure fails. Now consider no optimization whatsoever. # TODO: Figure out why solving fails. t0 = mp.convert(interval8.mid) # select the midpoint # return ParabolicCurve() t1 = Sub(newDuration, t0) a0 = Add(A, Mul(mp.fdiv(one, t0), B)) if (Abs(t1) < epsilon): a1 = zero else: a1 = Add(A, Mul(mp.fdiv(one, Neg(t1)), B)) assert (Sub(Abs(a0), am) < epsilon ) # check if a0 is really below the bound assert (Sub(Abs(a1), am) < epsilon ) # check if a1 is really below the bound # import IPython; IPython.embed() # Check if the velocity bound is violated vp = Add(v0, Mul(a0, t0)) if Abs(vp) > vm: vmnew = Mul(mp.sign(vp), vm) D2 = Prod([ pointfive, Sqr(Sub(vp, vmnew)), Sub(mp.fdiv(one, a0), mp.fdiv(one, a1)) ]) # print "D2", # mp.nprint(D2, n=_prec) # print "vmnew", # mp.nprint(vmnew, n=_prec) A2 = Sqr(Sub(vmnew, v0)) B2 = Neg(Sqr(Sub(vmnew, v1))) t0trimmed = mp.fdiv(Sub(vmnew, v0), a0) t1trimmed = mp.fdiv(Sub(v1, vmnew), a1) C2 = Sum([ Mul(t0trimmed, Sub(vmnew, v0)), Mul(t1trimmed, Sub(vmnew, v1)), Mul(mp.mpf('-2'), D2) ]) log.debug("\nA2 = {0}; \nB2 = {1}; \nC2 = {2}; \nD2 = {3};".format( mp.nstr(A2, n=_prec), mp.nstr(B2, n=_prec), mp.nstr(C2, n=_prec), mp.nstr(D2, n=_prec))) temp = Prod([A2, B2, B2]) initguess = mp.sign(temp) * (Abs(temp)**(1. / 3.)) root = mp.findroot(lambda x: Sub(Prod([x, x, x]), temp), x0=initguess) # import IPython; IPython.embed() log.debug("root = {0}".format(mp.nstr(root, n=_prec))) a0new = mp.fdiv(Add(A2, root), C2) if (Abs(a0new) > Add(am, epsilon)): if FuzzyZero(Sub(Mul(C2, a0new), A2), epsilon): # The computed a0new is exceeding the bound and its corresponding a1new is # zero. Therefore, there is no other way to fix this. This is probably because the # given newDuration is less than the minimum duration (x0, x1, v0, v1, vm, am) can # get. log.debug( "abs(a0new) > am and a1new = 0; Cannot fix this case. This happens probably because the given newDuration is too short." ) return ParabolicCurve() a0new = Mul(mp.sign(a0new), am) if (Abs(a0new) < epsilon): a1new = mp.fdiv(B2, C2) if (Abs(a1new) > Add(am, epsilon)): # Similar to the case above log.debug( "a0new = 0 and abs(a1new) > am; Cannot fix this case. This happens probably because the given newDuration is too short." ) return ParabolicCurve() else: if FuzzyZero(Sub(Mul(C2, a0new), A2), epsilon): # import IPython; IPython.embed() a1new = 0 else: a1new = Mul(mp.fdiv(B2, C2), Add(one, mp.fdiv(A2, Sub(Mul(C2, a0new), A2)))) if (Abs(a1new) > Add(am, epsilon)): a1new = Mul(mp.sign(a1new), am) a0new = Mul(mp.fdiv(A2, C2), Add(one, mp.fdiv(B2, Sub(Mul(C2, a1new), B2)))) if (Abs(a0new) > Add(am, epsilon)) or (Abs(a1new) > Add(am, epsilon)): log.warn("Cannot fix acceleration bounds violation") return ParabolicCurve() log.debug( "\na0 = {0}; \na0new = {1}; \na1 = {2}; \na1new = {3};".format( mp.nstr(a0, n=_prec), mp.nstr(a0new, n=_prec), mp.nstr(a1, n=_prec), mp.nstr(a1new, n=_prec))) if (Abs(a0new) < epsilon) and (Abs(a1new) < epsilon): log.warn("Both accelerations are zero. Should we allow this case?") return ParabolicCurve() if (Abs(a0new) < epsilon): # This is likely because v0 is at the velocity bound t1new = mp.fdiv(Sub(v1, vmnew), a1new) assert (t1new > 0) ramp2 = Ramp(v0, a1new, t1new) t0new = Sub(newDuration, t1new) assert (t0new > 0) ramp1 = Ramp(v0, zero, t0new, x0) newCurve = ParabolicCurve([ramp1, ramp2]) return newCurve elif (Abs(a1new) < epsilon): t0new = mp.fdiv(Sub(vmnew, v0), a0new) assert (t0new > 0) ramp1 = Ramp(v0, a0new, t0new, x0) t1new = Sub(newDuration, t0new) assert (t1new > 0) ramp2 = Ramp(ramp1.v1, zero, t1new) newCurve = ParabolicCurve([ramp1, ramp2]) return newCurve else: # No problem with those new accelerations # import IPython; IPython.embed() t0new = mp.fdiv(Sub(vmnew, v0), a0new) if (t0new < 0): log.debug( "t0new < 0. The given newDuration not achievable with the given bounds" ) return ParabolicCurve() t1new = mp.fdiv(Sub(v1, vmnew), a1new) if (t1new < 0): log.debug( "t1new < 0. The given newDuration not achievable with the given bounds" ) return ParabolicCurve() if (Add(t0new, t1new) > newDuration): # Final fix. Since we give more weight to acceleration bounds, we make the velocity # bound saturated. Therefore, we set vp to vmnew. # import IPython; IPython.embed() if FuzzyZero(A, epsilon): log.warn( "(final fix) A is zero. Don't know how to fix this case" ) return ParabolicCurve() t0new = mp.fdiv(Sub(Sub(vmnew, v0), B), A) if (t0new < 0): log.debug("(final fix) t0new is negative") return ParabolicCurve() t1new = Sub(newDuration, t0new) a0new = Add(A, Mul(mp.fdiv(one, t0new), B)) a1new = Add(A, Mul(mp.fdiv(one, Neg(t1new)), B)) ramp1 = Ramp(v0, a0new, t0new, x0) ramp2 = Ramp(ramp1.v1, a1new, t1new) newCurve = ParabolicCurve([ramp1, ramp2]) else: ramp1 = Ramp(v0, a0new, t0new, x0) ramp3 = Ramp(ramp1.v1, a1new, t1new) ramp2 = Ramp(ramp1.v1, zero, Sub(newDuration, Add(t0new, t1new))) newCurve = ParabolicCurve([ramp1, ramp2, ramp3]) # import IPython; IPython.embed() return newCurve else: ramp1 = Ramp(v0, a0, t0, x0) ramp2 = Ramp(ramp1.v1, a1, t1) newCurve = ParabolicCurve([ramp1, ramp2]) return newCurve