Exemplo n.º 1
0
def train_nlu(
    config: Text, nlu_data: Text, output: Text, train_path: Optional[Text]
) -> Optional[Text]:
    """Trains a NLU model.

    Args:
        config: Path to the config file for NLU.
        nlu_data: Path to the NLU training data.
        output: Output path.
        train_path: If `None` the model will be trained in a temporary
            directory, otherwise in the provided directory.

    Returns:
        If `train_path` is given it returns the path to the model archive,
        otherwise the path to the directory with the trained model files.

    """
    import rasa.nlu.train

    config = get_valid_config(config, CONFIG_MANDATORY_KEYS_NLU)

    nlu_data_directory = data.get_nlu_directory(nlu_data)

    if not os.listdir(nlu_data_directory):
        print_error(
            "No NLU data given. Please provide NLU data in order to train "
            "a Rasa NLU model."
        )
        return

    _train_path = train_path or tempfile.mkdtemp()
    print_color("Start training NLU model ...", color=bcolors.OKBLUE)
    _, nlu_model, _ = rasa.nlu.train(
        config, nlu_data_directory, _train_path, fixed_model_name="nlu"
    )
    print_color("Done.", color=bcolors.OKBLUE)

    if not train_path:
        output_path = create_output_path(output, prefix="nlu-")
        new_fingerprint = model.model_fingerprint(config, nlu_data=nlu_data_directory)
        model.create_package_rasa(_train_path, output_path, new_fingerprint)
        print_success(
            "Your Rasa NLU model is trained and saved at '{}'.".format(output_path)
        )

        return output_path

    return _train_path
Exemplo n.º 2
0
Arquivo: train.py Projeto: zylhub/rasa
async def _train_nlu_with_validated_data(
    file_importer: TrainingDataImporter,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
    additional_arguments: Optional[Dict] = None,
) -> Optional[Text]:
    """Train NLU with validated training and config data."""

    import rasa.nlu.train

    if additional_arguments is None:
        additional_arguments = {}

    with ExitStack() as stack:
        if train_path:
            # If the train path was provided, do nothing on exit.
            _train_path = train_path
        else:
            # Otherwise, create a temp train path and clean it up on exit.
            _train_path = stack.enter_context(
                TempDirectoryPath(tempfile.mkdtemp()))
        config = await file_importer.get_config()
        print_color("Training NLU model...", color=bcolors.OKBLUE)
        _, nlu_model, _ = await rasa.nlu.train(
            config,
            file_importer,
            _train_path,
            fixed_model_name="nlu",
            persist_nlu_training_data=persist_nlu_training_data,
            **additional_arguments,
        )
        print_color("NLU model training completed.", color=bcolors.OKBLUE)

        if train_path is None:
            # Only NLU was trained
            new_fingerprint = await model.model_fingerprint(file_importer)

            return model.package_model(
                fingerprint=new_fingerprint,
                output_directory=output,
                train_path=_train_path,
                fixed_model_name=fixed_model_name,
                model_prefix="nlu-",
            )

        return _train_path
Exemplo n.º 3
0
async def _train_core_with_validated_data(
    file_importer: TrainingDataImporter,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    additional_arguments: Optional[Dict] = None,
    interpreter: Optional[Interpreter] = None,
) -> Optional[Text]:
    """Train Core with validated training and config data."""

    import rasa.core.train

    with ExitStack() as stack:
        if train_path:
            # If the train path was provided, do nothing on exit.
            _train_path = train_path
        else:
            # Otherwise, create a temp train path and clean it up on exit.
            _train_path = stack.enter_context(
                TempDirectoryPath(tempfile.mkdtemp()))

        # normal (not compare) training
        print_color("Training Core model...", color=bcolors.OKBLUE)
        domain, config = await asyncio.gather(file_importer.get_domain(),
                                              file_importer.get_config())
        await rasa.core.train(
            domain_file=domain,
            training_resource=file_importer,
            output_path=os.path.join(_train_path,
                                     DEFAULT_CORE_SUBDIRECTORY_NAME),
            policy_config=config,
            additional_arguments=additional_arguments,
            interpreter=interpreter,
        )
        print_color("Core model training completed.", color=bcolors.OKBLUE)

        if train_path is None:
            # Only Core was trained.
            new_fingerprint = await model.model_fingerprint(file_importer)
            return model.package_model(
                fingerprint=new_fingerprint,
                output_directory=output,
                train_path=_train_path,
                fixed_model_name=fixed_model_name,
                model_prefix="core-",
            )

        return _train_path
Exemplo n.º 4
0
def _train_nlu_with_validated_data(
    config: Text,
    nlu_data_directory: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    uncompress: bool = False,
) -> Optional[Text]:
    """Train NLU with validated training and config data."""

    import rasa.nlu.train

    if not os.listdir(nlu_data_directory):
        print_error(
            "No NLU data given. Please provide NLU data in order to train "
            "a Rasa NLU model.")
        return

    _train_path = train_path or tempfile.mkdtemp()

    print_color("Start training NLU model ...", color=bcolors.OKBLUE)
    _, nlu_model, _ = rasa.nlu.train(config,
                                     nlu_data_directory,
                                     _train_path,
                                     fixed_model_name="nlu")
    print_color("Done.", color=bcolors.OKBLUE)

    if not train_path:
        # Only NLU was trained
        output_path = create_output_path(output,
                                         prefix="nlu-",
                                         fixed_name=fixed_model_name)
        new_fingerprint = model.model_fingerprint(config,
                                                  nlu_data=nlu_data_directory)

        model.create_package_rasa(_train_path, output_path, new_fingerprint)

        if uncompress:
            output_path = decompress(output_path)

        print_success(
            "Your Rasa NLU model is trained and saved at '{}'.".format(
                output_path))

        return output_path

    return _train_path
Exemplo n.º 5
0
async def _train_core_with_validated_data(
    domain: Domain,
    config: Text,
    story_directory: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    kwargs: Optional[Dict] = None,
) -> Optional[Text]:
    """Train Core with validated training and config data."""

    import rasa.core.train

    with ExitStack() as stack:
        if train_path:
            # If the train path was provided, do nothing on exit.
            _train_path = train_path
        else:
            # Otherwise, create a temp train path and clean it up on exit.
            _train_path = stack.enter_context(
                TempDirectoryPath(tempfile.mkdtemp()))

        # normal (not compare) training
        print_color("Training Core model...", color=bcolors.OKBLUE)
        await rasa.core.train(
            domain_file=domain,
            stories_file=story_directory,
            output_path=os.path.join(_train_path, "core"),
            policy_config=config,
            kwargs=kwargs,
        )
        print_color("Core model training completed.", color=bcolors.OKBLUE)

        if train_path is None:
            # Only Core was trained.
            new_fingerprint = model.model_fingerprint(config,
                                                      domain,
                                                      stories=story_directory)
            return _package_model(
                new_fingerprint=new_fingerprint,
                output_path=output,
                train_path=_train_path,
                fixed_model_name=fixed_model_name,
                model_prefix="core-",
            )

        return _train_path
Exemplo n.º 6
0
async def _do_training(
    domain: Union[Domain, Text],
    config: Dict[Text, Text],
    nlu_data_directory: Optional[Text],
    story_directory: Optional[Text],
    output_path: Text,
    train_path: Text,
    force_training: bool = False,
    retrain_core: bool = True,
    retrain_nlu: Union[bool, List[Text]] = True,
    fixed_model_name: Optional[Text] = None,
    kwargs: Optional[Dict] = None,
):

    if force_training or retrain_core:
        await _train_core_with_validated_data(
            domain=domain,
            config=config[list(config.keys())[0]],
            story_directory=story_directory,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            kwargs=kwargs,
        )
    else:
        print_color(
            "Core stories/configuration did not change. No need to retrain Core model.",
            color=bcolors.OKBLUE,
        )

    if force_training or retrain_nlu:
        _train_nlu_with_validated_data(
            config=config,
            nlu_data_directory=nlu_data_directory,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            retrain_nlu=retrain_nlu
        )
    else:
        print_color(
            "NLU data/configuration did not change. No need to retrain NLU model.",
            color=bcolors.OKBLUE,
        )
Exemplo n.º 7
0
def print_buttons(
    message: Dict[Text, Any],
    is_latest_message: bool = False,
    color=cli_utils.bcolors.OKBLUE,
) -> Optional[questionary.Question]:
    if is_latest_message:
        choices = cli_utils.button_choices_from_message_data(
            message, allow_free_text_input=True
        )
        question = questionary.select(
            message.get("text"),
            choices,
            style=Style([("qmark", "#6d91d3"), ("", "#6d91d3"), ("answer", "#b373d6")]),
        )
        return question
    else:
        cli_utils.print_color("Buttons:", color=color)
        for idx, button in enumerate(message.get("buttons")):
            cli_utils.print_color(cli_utils.button_to_string(button, idx), color=color)
Exemplo n.º 8
0
async def _train_core_with_validated_data(
    domain: Domain,
    config: Text,
    story_directory: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    uncompress: bool = False,
    kwargs: Optional[Dict] = None,
) -> Optional[Text]:
    """Train Core with validated training and config data."""

    import rasa.core.train

    _train_path = train_path or tempfile.mkdtemp()

    # normal (not compare) training
    print_color("Start training dialogue model ...", color=bcolors.OKBLUE)
    await rasa.core.train(
        domain_file=domain,
        stories_file=story_directory,
        output_path=os.path.join(_train_path, "core"),
        policy_config=config,
        kwargs=kwargs,
    )
    print_color("Done.", color=bcolors.OKBLUE)

    if train_path is None:
        # Only Core was trained.
        new_fingerprint = model.model_fingerprint(config,
                                                  domain,
                                                  stories=story_directory)
        return _package_model(
            new_fingerprint=new_fingerprint,
            output_path=output,
            train_path=_train_path,
            fixed_model_name=fixed_model_name,
            model_prefix="core-",
            uncompress=uncompress,
        )

    return _train_path
Exemplo n.º 9
0
def _train_nlu_with_validated_data(
    config: Text,
    nlu_data_directory: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
) -> Optional[Text]:
    """Train NLU with validated training and config data."""

    import rasa.nlu.train

    with ExitStack() as stack:
        if train_path:
            # If the train path was provided, do nothing on exit.
            _train_path = train_path
        else:
            # Otherwise, create a temp train path and clean it up on exit.
            _train_path = stack.enter_context(
                TempDirectoryPath(tempfile.mkdtemp()))

        print_color("Training NLU model...", color=bcolors.OKBLUE)
        _, nlu_model, _ = rasa.nlu.train(config,
                                         nlu_data_directory,
                                         _train_path,
                                         fixed_model_name="nlu")
        print_color("NLU model training completed.", color=bcolors.OKBLUE)

        if train_path is None:
            # Only NLU was trained
            new_fingerprint = model.model_fingerprint(
                config, nlu_data=nlu_data_directory)

            return _package_model(
                new_fingerprint=new_fingerprint,
                output_path=output,
                train_path=_train_path,
                fixed_model_name=fixed_model_name,
                model_prefix="nlu-",
            )

        return _train_path
Exemplo n.º 10
0
async def _do_training(
    file_importer: TrainingDataImporter,
    output_path: Text,
    train_path: Text,
    force_training: bool = False,
    retrain_core: bool = True,
    retrain_nlu: Union[bool, List[Text]] = True,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
    kwargs: Optional[Dict] = None,
):

    if force_training or retrain_core:
        await _train_core_with_validated_data(
            file_importer,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            kwargs=kwargs,
        )
    else:
        print_color(
            "Core stories/configuration did not change. No need to retrain Core model.",
            color=bcolors.OKBLUE,
        )

    if force_training or retrain_nlu:
        await _train_nlu_with_validated_data(
            file_importer,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            retrain_nlu=retrain_nlu,
            persist_nlu_training_data=persist_nlu_training_data,
        )
    else:
        print_color(
            "NLU data/configuration did not change. No need to retrain NLU model.",
            color=bcolors.OKBLUE,
        )
Exemplo n.º 11
0
async def _train_nlu_with_validated_data(
        file_importer: TrainingDataImporter,
        output: Text,
        train_path: Optional[Text] = None,
        fixed_model_name: Optional[Text] = None,
        persist_nlu_training_data: bool = False,
        retrain_nlu: Union[bool, List[Text]] = True) -> Optional[Text]:
    """Train NLU with validated training and config data."""

    import rasa.nlu.train
    import re

    with ExitStack() as stack:
        models = {}
        from rasa.nlu import config as cfg_loader

        if train_path:
            # If the train path was provided, do nothing on exit.
            _train_path = train_path
        else:
            # Otherwise, create a temp train path and clean it up on exit.
            _train_path = stack.enter_context(
                TempDirectoryPath(tempfile.mkdtemp()))
        # bf mod
        config = await file_importer.get_nlu_config(retrain_nlu)
        for lang in config:
            if config[lang]:
                print_color("Start training {} NLU model ...".format(lang),
                            color=bcolors.OKBLUE)
                _, models[lang], _ = await rasa.nlu.train(
                    config[lang],
                    file_importer,  # config[lang]['path'],
                    _train_path,
                    fixed_model_name="nlu-{}".format(lang),
                    persist_nlu_training_data=persist_nlu_training_data,
                )
            else:
                print_color(
                    "NLU data for language <{}> didn't change, skipping training..."
                    .format(lang),
                    color=bcolors.OKBLUE)
        # /bf mod
        print_color("NLU model training completed.", color=bcolors.OKBLUE)

        if train_path is None:
            # Only NLU was trained
            new_fingerprint = await model.model_fingerprint(file_importer)

            return model.package_model(
                fingerprint=new_fingerprint,
                output_directory=output,
                train_path=_train_path,
                fixed_model_name=fixed_model_name,
                model_prefix="nlu-",
            )

        return _train_path
Exemplo n.º 12
0
def _train_nlu_with_validated_data(
    config: Text,
    nlu_data_directory: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    uncompress: bool = False,
) -> Optional[Text]:
    """Train NLU with validated training and config data."""

    import rasa.nlu.train

    _train_path = train_path or tempfile.mkdtemp()

    print_color("Start training NLU model ...", color=bcolors.OKBLUE)
    _, nlu_model, _ = rasa.nlu.train(config,
                                     nlu_data_directory,
                                     _train_path,
                                     fixed_model_name="nlu")
    print_color("Done.", color=bcolors.OKBLUE)

    if train_path is None:
        # Only NLU was trained
        new_fingerprint = model.model_fingerprint(config,
                                                  nlu_data=nlu_data_directory)

        return _package_model(
            new_fingerprint=new_fingerprint,
            output_path=output,
            train_path=_train_path,
            fixed_model_name=fixed_model_name,
            model_prefix="nlu-",
            uncompress=uncompress,
        )

    return _train_path
Exemplo n.º 13
0
async def _do_training(
    file_importer: TrainingDataImporter,
    output_path: Text,
    train_path: Text,
    fingerprint_comparison_result: Optional[
        FingerprintComparisonResult] = None,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
    core_additional_arguments: Optional[Dict] = None,
    nlu_additional_arguments: Optional[Dict] = None,
    old_model_zip_path: Optional[Text] = None,
):
    if not fingerprint_comparison_result:
        fingerprint_comparison_result = FingerprintComparisonResult()

    interpreter_path = None
    if fingerprint_comparison_result.should_retrain_nlu():
        model_path = await _train_nlu_with_validated_data(
            file_importer,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            additional_arguments=nlu_additional_arguments,
        )
        interpreter_path = os.path.join(model_path,
                                        DEFAULT_NLU_SUBDIRECTORY_NAME)
    else:
        print_color(
            "NLU data/configuration did not change. No need to retrain NLU model.",
            color=bcolors.OKBLUE,
        )

    if fingerprint_comparison_result.should_retrain_core():
        await _train_core_with_validated_data(
            file_importer,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            additional_arguments=core_additional_arguments,
            interpreter=_load_interpreter(interpreter_path)
            or _interpreter_from_previous_model(old_model_zip_path),
        )
    elif fingerprint_comparison_result.should_retrain_nlg():
        print_color(
            "Core stories/configuration did not change. "
            "Only the templates section has been changed. A new model with "
            "the updated templates will be created.",
            color=bcolors.OKBLUE,
        )
        await model.update_model_with_new_domain(file_importer, train_path)
    else:
        print_color(
            "Core stories/configuration did not change. No need to retrain Core model.",
            color=bcolors.OKBLUE,
        )
Exemplo n.º 14
0
def _train_nlu_with_validated_data(
    config: Dict[Text, Text],
    nlu_data_directory: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    retrain_nlu: Union[bool, List[Text]] = True
) -> Optional[Text]:
    """Train NLU with validated training and config data."""

    import rasa.nlu.train
    import re

    with ExitStack() as stack:
        models = {}
        from rasa.nlu import config as cfg_loader

        if train_path:
            # If the train path was provided, do nothing on exit.
            _train_path = train_path
        else:
            # Otherwise, create a temp train path and clean it up on exit.
            _train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp()))

        pattern = r'(\w\w)*(?=\.)'
        for file in os.listdir(nlu_data_directory):
            lang = re.search(pattern, file).groups()[0]
            if isinstance(retrain_nlu, bool) and retrain_nlu or lang in retrain_nlu:
                nlu_file_path = os.path.join(nlu_data_directory, file)
                print_color("Start training {} NLU model ...".format(lang), color=bcolors.OKBLUE)
                nlu_config = cfg_loader.load(config[lang])
                nlu_config.language = lang
                _, models[lang], _ = rasa.nlu.train(
                    nlu_config, nlu_file_path, _train_path, fixed_model_name="nlu-{}".format(lang)
                )
            else:
                print_color("{} NLU data didn't change, skipping training...".format(lang), color=bcolors.OKBLUE)

        print_color("NLU model training completed.", color=bcolors.OKBLUE)

        if train_path is None:
            # Only NLU was trained
            new_fingerprint = model.model_fingerprint(
                config, nlu_data=nlu_data_directory
            )

            return _package_model(
                new_fingerprint=new_fingerprint,
                output_path=output,
                train_path=_train_path,
                fixed_model_name=fixed_model_name,
                model_prefix="nlu-",
            )

        return _train_path
Exemplo n.º 15
0
async def _do_training(
    file_importer: TrainingDataImporter,
    output_path: Text,
    train_path: Text,
    fingerprint_comparison_result: Optional[
        FingerprintComparisonResult] = None,
    fixed_model_name: Optional[Text] = None,
    persist_nlu_training_data: bool = False,
    kwargs: Optional[Dict] = None,
):
    if not fingerprint_comparison_result:
        fingerprint_comparison_result = FingerprintComparisonResult()

    if fingerprint_comparison_result.should_retrain_core():
        await _train_core_with_validated_data(
            file_importer,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            kwargs=kwargs,
        )
    elif fingerprint_comparison_result.should_retrain_nlg():
        print_color(
            "Core stories/configuration did not change. "
            "Only the templates section has been changed. A new model with "
            "the updated templates will be created.",
            color=bcolors.OKBLUE,
        )
        await model.update_model_with_new_domain(file_importer, train_path)
    else:
        print_color(
            "Core stories/configuration did not change. No need to retrain Core model.",
            color=bcolors.OKBLUE,
        )

    if fingerprint_comparison_result.should_retrain_nlu():
        await _train_nlu_with_validated_data(
            file_importer,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            retrain_nlu=fingerprint_comparison_result.nlu,
            persist_nlu_training_data=persist_nlu_training_data,
        )
    else:
        print_color(
            "NLU data/configuration did not change. No need to retrain NLU model.",
            color=bcolors.OKBLUE,
        )
Exemplo n.º 16
0
def print_bot_output(
    message: Dict[Text, Any],
    is_latest_message: bool = False,
    color=rasa.shared.utils.io.bcolors.OKBLUE,
) -> Optional[questionary.Question]:
    if "buttons" in message:
        question = print_buttons(message, is_latest_message, color)
        if question:
            return question

    if "text" in message:
        cli_utils.print_color(message.get("text"), color=color)

    if "image" in message:
        cli_utils.print_color("Image: " + message.get("image"), color=color)

    if "attachment" in message:
        cli_utils.print_color("Attachment: " + message.get("attachment"),
                              color=color)

    if "elements" in message:
        cli_utils.print_color("Elements:", color=color)
        for idx, element in enumerate(message.get("elements")):
            cli_utils.print_color(cli_utils.element_to_string(element, idx),
                                  color=color)

    if "quick_replies" in message:
        cli_utils.print_color("Quick Replies:", color=color)
        for idx, element in enumerate(message.get("quick_replies")):
            cli_utils.print_color(cli_utils.button_to_string(element, idx),
                                  color=color)

    if "custom" in message:
        cli_utils.print_color("Custom json:", color=color)
        cli_utils.print_color(json.dumps(message.get("custom"), indent=2),
                              color=color)
Exemplo n.º 17
0
async def _train_async_internal(
    file_importer: TrainingDataImporter,
    train_path: Text,
    output_path: Text,
    force_training: bool,
    fixed_model_name: Optional[Text],
    persist_nlu_training_data: bool,
    kwargs: Optional[Dict],
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.

    Args:
        file_importer: `TrainingDataImporter` which supplies the training data.
        train_path: Directory in which to train the model.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        fixed_model_name: Name of model to be stored.
        kwargs: Additional training parameters.

    Returns:
        Path of the trained model archive.
    """
    new_fingerprint = await model.model_fingerprint(file_importer)

    stories = await file_importer.get_stories()
    nlu_data = await file_importer.get_nlu_data()

    # if stories.is_empty() and nlu_data.is_empty():
    #     print_error(
    #         "No training data given. Please provide stories and NLU data in "
    #         "order to train a Rasa model using the '--data' argument."
    #     )
    #     return

    # if stories.is_empty():
    #     print_warning("No stories present. Just a Rasa NLU model will be trained.")
    #     return await _train_nlu_with_validated_data(
    #         file_importer,
    #         output=output_path,
    #         fixed_model_name=fixed_model_name,
    #         persist_nlu_training_data=persist_nlu_training_data,
    #     )

    # if nlu_data.is_empty():
    #     print_warning("No NLU data present. Just a Rasa Core model will be trained.")
    #     return await _train_core_with_validated_data(
    #         file_importer,
    #         output=output_path,
    #         fixed_model_name=fixed_model_name,
    #         kwargs=kwargs,
    #     )

    old_model = model.get_latest_model(output_path)
    retrain_core, retrain_nlu = model.should_retrain(new_fingerprint,
                                                     old_model, train_path)

    # bf mod
    domain = await file_importer.get_domain()
    core_untrainable = domain.is_empty() or stories.is_empty()
    nlu_untrainable = [l for l, d in nlu_data.items() if d.is_empty()]
    retrain_core = retrain_core and not core_untrainable

    if retrain_nlu is True:
        from rasa.model import FINGERPRINT_NLU_DATA_KEY
        possible_retrains = new_fingerprint[FINGERPRINT_NLU_DATA_KEY].keys()
    else:
        possible_retrains = retrain_nlu

    if core_untrainable:
        print_color(
            "Skipping Core training since domain or stories are empty.",
            color=bcolors.OKBLUE)
    for lang in nlu_untrainable:
        print_color(
            "No NLU data found for language <{}>, skipping training...".format(
                lang),
            color=bcolors.OKBLUE)
    retrain_nlu = [l for l in possible_retrains if l not in nlu_untrainable]
    # /bf mod

    if force_training or retrain_core or retrain_nlu:
        await _do_training(
            file_importer,
            output_path=output_path,
            train_path=train_path,
            force_training=force_training,
            retrain_core=retrain_core,
            retrain_nlu=retrain_nlu,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            kwargs=kwargs,
        )

        return model.package_model(
            fingerprint=new_fingerprint,
            output_directory=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )

    print_success("Nothing changed. You can use the old model stored at '{}'."
                  "".format(os.path.abspath(old_model)))
    return old_model
Exemplo n.º 18
0
def print_bot_output(
        message: Dict[Text, Any],
        color=cli_utils.bcolors.OKBLUE) -> Optional[questionary.Question]:
    if ("text" in message) and not ("buttons" in message):
        cli_utils.print_color(message.get("text"), color=color)

    if "image" in message:
        cli_utils.print_color("Image: " + message.get("image"), color=color)

    if "attachment" in message:
        cli_utils.print_color("Attachment: " + message.get("attachment"),
                              color=color)

    if "buttons" in message:
        choices = cli_utils.button_choices_from_message_data(
            message, allow_free_text_input=True)

        question = questionary.select(
            message.get("text"),
            choices,
            style=Style([("qmark", "#6d91d3"), ("", "#6d91d3"),
                         ("answer", "#b373d6")]),
        )
        return question

    if "elements" in message:
        cli_utils.print_color("Elements:", color=color)
        for idx, element in enumerate(message.get("elements")):
            cli_utils.print_color(cli_utils.element_to_string(element, idx),
                                  color=color)

    if "quick_replies" in message:
        cli_utils.print_color("Quick Replies:", color=color)
        for idx, element in enumerate(message.get("quick_replies")):
            cli_utils.print_color(cli_utils.button_to_string(element, idx),
                                  color=color)

    if "custom" in message:
        cli_utils.print_color("Custom json:", color=color)
        cli_utils.print_color(json.dumps(message.get("custom"), indent=2),
                              color=color)
Exemplo n.º 19
0
def _bot_output(
        message: Dict[Text, Any],
        color=cli_utils.bcolors.OKBLUE) -> Optional[questionary.Question]:
    from sagas.nlu.tts_utils import say_lang
    # from sagas.kit.analysis_kit import AnalysisKit

    if ("text" in message) and not ("buttons" in message):
        text = message.get("text")
        cli_utils.print_color(text, color=color)
        say_lang(text, sett.lang, False)
        # AnalysisKit().console_vis(text, sett.lang)

    if "image" in message:
        cli_utils.print_color("Image: " + message.get("image"), color=color)

    if "attachment" in message:
        cli_utils.print_color("Attachment: " + message.get("attachment"),
                              color=color)

    if "buttons" in message:
        choices = cli_utils.button_choices_from_message_data(
            message, allow_free_text_input=True)

        question = questionary.select(
            message.get("text"),
            choices,
            style=Style([("qmark", "#6d91d3"), ("", "#6d91d3"),
                         ("answer", "#b373d6")]),
        )
        return question

    if "elements" in message:
        cli_utils.print_color("Elements:", color=color)
        for idx, element in enumerate(message.get("elements")):
            cli_utils.print_color(cli_utils.element_to_string(element, idx),
                                  color=color)

    if "quick_replies" in message:
        cli_utils.print_color("Quick Replies:", color=color)
        for idx, element in enumerate(message.get("quick_replies")):
            cli_utils.print_color(cli_utils.button_to_string(element, idx),
                                  color=color)

    if "custom" in message:
        cli_utils.print_color("Custom json:", color=color)
        cli_utils.print_color(json.dumps(message.get("custom"), indent=2),
                              color=color)
Exemplo n.º 20
0
async def train_core_async(
    domain: Text,
    config: Text,
    stories: Text,
    output: Text,
    train_path: Optional[Text] = None,
    kwargs: Optional[Dict] = None,
) -> Optional[Text]:
    """Trains a Core model.

    Args:
        domain: Path to the domain file.
        config: Path to the config file for Core.
        stories: Path to the Core training data.
        output: Output path.
        train_path: If `None` the model will be trained in a temporary
            directory, otherwise in the provided directory.
        kwargs: Additional training parameters.

    Returns:
        If `train_path` is given it returns the path to the model archive,
        otherwise the path to the directory with the trained model files.

    """
    import rasa.core.train

    config = get_valid_config(config, CONFIG_MANDATORY_KEYS_CORE)

    _train_path = train_path or tempfile.mkdtemp()

    story_directory = data.get_core_directory(stories)

    if not os.listdir(story_directory):
        print_error(
            "No dialogue data given. Please provide dialogue data in order to "
            "train a Rasa Core model."
        )
        return

    # normal (not compare) training
    print_color("Start training dialogue model ...", color=bcolors.OKBLUE)
    await rasa.core.train(
        domain_file=domain,
        stories_file=story_directory,
        output_path=os.path.join(_train_path, "core"),
        policy_config=config,
        kwargs=kwargs,
    )
    print_color("Done.", color=bcolors.OKBLUE)

    if not train_path:
        # Only Core was trained.
        output_path = create_output_path(output, prefix="core-")
        new_fingerprint = model.model_fingerprint(
            config, domain, stories=story_directory
        )
        model.create_package_rasa(_train_path, output_path, new_fingerprint)
        print_success(
            "Your Rasa Core model is trained and saved at '{}'.".format(output_path)
        )

        return output_path

    return _train_path
Exemplo n.º 21
0
async def _train_async_internal(
    file_importer: TrainingDataImporter,
    train_path: Text,
    output_path: Text,
    force_training: bool,
    fixed_model_name: Optional[Text],
    persist_nlu_training_data: bool,
    additional_arguments: Optional[Dict],
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU). Use only from `train_async`.

    Args:
        file_importer: `TrainingDataImporter` which supplies the training data.
        train_path: Directory in which to train the model.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        persist_nlu_training_data: `True` if the NLU training data should be persisted
                                   with the model.
        fixed_model_name: Name of model to be stored.
        additional_arguments: Additional training parameters.

    Returns:
        Path of the trained model archive.
    """

    stories, nlu_data = await asyncio.gather(file_importer.get_stories(),
                                             file_importer.get_nlu_data())

    # if stories.is_empty() and nlu_data.is_empty():
    #     print_error(
    #         "No training data given. Please provide stories and NLU data in "
    #         "order to train a Rasa model using the '--data' argument."
    #     )
    #     return

    # if nlu_data.is_empty():
    #     print_warning("No NLU data present. Just a Rasa Core model will be trained.")
    #     return await _train_core_with_validated_data(
    #         file_importer,
    #         output=output_path,
    #         fixed_model_name=fixed_model_name,
    #         additional_arguments=additional_arguments,
    #     )

    new_fingerprint = await model.model_fingerprint(file_importer)
    old_model = model.get_latest_model(output_path)
    fingerprint_comparison = FingerprintComparisonResult(
        force_training=force_training)
    if not force_training:
        fingerprint_comparison = model.should_retrain(new_fingerprint,
                                                      old_model, train_path)

    # bf mod >
    if fingerprint_comparison.nlu == True:  # replace True with list of all langs
        fingerprint_comparison.nlu = list(
            new_fingerprint.get("nlu-config", {}).keys())
    domain = await file_importer.get_domain()
    core_untrainable = domain.is_empty() or stories.is_empty()
    nlu_untrainable = [l for l, d in nlu_data.items() if d.is_empty()]
    fingerprint_comparison.core = fingerprint_comparison.core and not core_untrainable
    fingerprint_comparison.nlu = [
        l for l in fingerprint_comparison.nlu if l not in nlu_untrainable
    ]

    if core_untrainable:
        print_color(
            "Skipping Core training since domain or stories are empty.",
            color=bcolors.OKBLUE)
    for lang in nlu_untrainable:
        print_color(
            "No NLU data found for language <{}>, skipping training...".format(
                lang),
            color=bcolors.OKBLUE)
    # </ bf mod

    if fingerprint_comparison.is_training_required():
        await _do_training(
            file_importer,
            output_path=output_path,
            train_path=train_path,
            fingerprint_comparison_result=fingerprint_comparison,
            fixed_model_name=fixed_model_name,
            persist_nlu_training_data=persist_nlu_training_data,
            additional_arguments=additional_arguments,
        )

        return model.package_model(
            fingerprint=new_fingerprint,
            output_directory=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
        )

    print_success("Nothing changed. You can use the old model stored at '{}'."
                  "".format(os.path.abspath(old_model)))
    return old_model