Exemplo n.º 1
0
def test_resource_caching_if_already_restored(
        tmp_path_factory: TempPathFactory):
    initial_storage_dir = tmp_path_factory.mktemp("initial_model_storage")
    model_storage = LocalModelStorage(initial_storage_dir)

    resource = Resource("my resource")

    # Fill model storage
    test_filename = "file.txt"
    test_content = "test_resource_caching"
    with model_storage.write_to(resource) as temporary_directory:
        file = temporary_directory / test_filename
        file.write_text(test_content)

    cache_dir = tmp_path_factory.mktemp("cache_dir")

    # Cache resource
    resource.to_cache(cache_dir, model_storage)

    new_storage_dir = tmp_path_factory.mktemp("new dir")
    rasa.utils.common.copy_directory(initial_storage_dir, new_storage_dir)

    reinstantiated_resource = Resource.from_cache(
        resource.name,
        cache_dir,
        LocalModelStorage(new_storage_dir),
        resource.output_fingerprint,
    )

    assert reinstantiated_resource == resource
Exemplo n.º 2
0
def test_resource_caching_if_already_restored_with_different_state(
    tmp_path_factory: TempPathFactory, ):
    initial_storage_dir = tmp_path_factory.mktemp("initial_model_storage")
    model_storage = LocalModelStorage(initial_storage_dir)

    resource = Resource("my resource")

    # Fill model storage
    test_filename = "file.txt"
    test_content = "test_resource_caching"
    with model_storage.write_to(resource) as temporary_directory:
        file = temporary_directory / test_filename
        file.write_text(test_content)

    cache_dir = tmp_path_factory.mktemp("cache_dir")

    # Cache resource
    resource.to_cache(cache_dir, model_storage)

    # Pretend there is an additional file which is not in the restored storage.
    # This makes the directories and causes the `from_cache` part to fail
    # different
    (temporary_directory / "another_file").touch()

    new_storage_dir = tmp_path_factory.mktemp("new dir")
    rasa.utils.common.copy_directory(initial_storage_dir, new_storage_dir)

    with pytest.raises(ValueError):
        Resource.from_cache(
            resource.name,
            cache_dir,
            LocalModelStorage(new_storage_dir),
            resource.output_fingerprint,
        )
Exemplo n.º 3
0
def test_resource_caching(tmp_path_factory: TempPathFactory):
    model_storage = LocalModelStorage(
        tmp_path_factory.mktemp("initial_model_storage"))

    resource = Resource("my resource")

    # Fill model storage
    test_filename = "file.txt"
    test_content = "test_resource_caching"
    with model_storage.write_to(resource) as temporary_directory:
        file = temporary_directory / test_filename
        file.write_text(test_content)

    cache_dir = tmp_path_factory.mktemp("cache_dir")

    # Cache resource
    resource.to_cache(cache_dir, model_storage)

    # Reload resource from cache and inspect
    new_model_storage = LocalModelStorage(
        tmp_path_factory.mktemp("new_model_storage"))
    reinstantiated_resource = Resource.from_cache(resource.name, cache_dir,
                                                  new_model_storage,
                                                  resource.output_fingerprint)

    assert reinstantiated_resource == resource

    assert reinstantiated_resource.fingerprint() == resource.fingerprint()

    # Read written resource data from model storage to see whether all expected
    # contents are there
    with new_model_storage.read_from(resource) as temporary_directory:
        assert (temporary_directory /
                test_filename).read_text() == test_content
Exemplo n.º 4
0
def test_create_model_package(
    tmp_path_factory: TempPathFactory,
    domain: Domain,
):
    train_model_storage = LocalModelStorage(
        tmp_path_factory.mktemp("train model storage"))

    train_schema = GraphSchema({
        "train":
        SchemaNode(
            needs={},
            uses=PersistableTestComponent,
            fn="train",
            constructor_name="create",
            config={
                "some_config": 123455,
                "some more config": [{
                    "nested": "hi"
                }]
            },
        ),
        "load":
        SchemaNode(
            needs={"resource": "train"},
            uses=PersistableTestComponent,
            fn="run_inference",
            constructor_name="load",
            config={},
            is_target=True,
        ),
    })

    predict_schema = GraphSchema({
        "run":
        SchemaNode(
            needs={},
            uses=PersistableTestComponent,
            fn="run",
            constructor_name="load",
            config={
                "some_config": 123455,
                "some more config": [{
                    "nested": "hi"
                }]
            },
        ),
    })

    # Fill model Storage
    with train_model_storage.write_to(Resource("resource1")) as directory:
        file = directory / "file.txt"
        file.write_text("test")

    # Package model
    persisted_model_dir = tmp_path_factory.mktemp("persisted models")
    archive_path = persisted_model_dir / "my-model.tar.gz"

    trained_at = datetime.utcnow()
    with freezegun.freeze_time(trained_at):
        train_model_storage.create_model_package(archive_path, train_schema,
                                                 predict_schema, domain)

    # Unpack and inspect packaged model
    load_model_storage_dir = tmp_path_factory.mktemp("load model storage")

    (
        load_model_storage,
        packaged_metadata,
    ) = LocalModelStorage.from_model_archive(load_model_storage_dir,
                                             archive_path)

    assert packaged_metadata.train_schema == train_schema
    assert packaged_metadata.predict_schema == predict_schema
    assert packaged_metadata.domain.as_dict() == domain.as_dict()

    assert packaged_metadata.rasa_open_source_version == rasa.__version__
    assert packaged_metadata.trained_at == trained_at
    assert packaged_metadata.model_id

    persisted_resources = load_model_storage_dir.glob("*")
    assert list(persisted_resources) == [
        Path(load_model_storage_dir, "resource1")
    ]