Exemplo n.º 1
0
def test_load_multi_file_training_data(default_domain):
    # the stories file in `data/test_multifile_stories` is the same as in
    # `data/test_stories/stories.md`, but split across multiple files
    featurizer = MaxHistoryTrackerFeaturizer(BinarySingleStateFeaturizer(),
                                             max_history=2)
    trackers = training.load_data("data/test_stories/stories.md",
                                  default_domain,
                                  augmentation_factor=0)
    (tr_as_sts, tr_as_acts) = featurizer.training_states_and_actions(
        trackers, default_domain)
    hashed = []
    for sts, acts in zip(tr_as_sts, tr_as_acts):
        hashed.append(json.dumps(sts + acts, sort_keys=True))
    hashed = sorted(hashed, reverse=True)

    data = featurizer.featurize_trackers(trackers, default_domain)

    featurizer_mul = MaxHistoryTrackerFeaturizer(BinarySingleStateFeaturizer(),
                                                 max_history=2)
    trackers_mul = training.load_data("data/test_multifile_stories",
                                      default_domain,
                                      augmentation_factor=0)
    (tr_as_sts_mul, tr_as_acts_mul) = featurizer.training_states_and_actions(
        trackers_mul, default_domain)
    hashed_mul = []
    for sts_mul, acts_mul in zip(tr_as_sts_mul, tr_as_acts_mul):
        hashed_mul.append(json.dumps(sts_mul + acts_mul, sort_keys=True))
    hashed_mul = sorted(hashed_mul, reverse=True)

    data_mul = featurizer_mul.featurize_trackers(trackers_mul, default_domain)

    assert hashed == hashed_mul

    assert np.all(data.X.sort(axis=0) == data_mul.X.sort(axis=0))
    assert np.all(data.y.sort(axis=0) == data_mul.y.sort(axis=0))
Exemplo n.º 2
0
def test_load_multi_file_training_data(default_domain):
    # the stories file in `data/test_multifile_stories` is the same as in
    # `data/test_stories/stories.md`, but split across multiple files
    featurizer = MaxHistoryTrackerFeaturizer(
        BinarySingleStateFeaturizer(), max_history=2)
    trackers = training.load_data(
        "data/test_stories/stories.md",
        default_domain,
        augmentation_factor=0
    )
    (tr_as_sts, tr_as_acts) = featurizer.training_states_and_actions(
                                        trackers, default_domain)
    hashed = []
    for sts, acts in zip(tr_as_sts, tr_as_acts):
        hashed.append(json.dumps(sts + acts, sort_keys=True))
    hashed = sorted(hashed, reverse=True)

    data = featurizer.featurize_trackers(trackers,
                                         default_domain)

    featurizer_mul = MaxHistoryTrackerFeaturizer(
        BinarySingleStateFeaturizer(), max_history=2)
    trackers_mul = training.load_data(
        "data/test_multifile_stories",
        default_domain,
        augmentation_factor=0
    )
    (tr_as_sts_mul, tr_as_acts_mul) = featurizer.training_states_and_actions(
                                        trackers_mul, default_domain)
    hashed_mul = []
    for sts_mul, acts_mul in zip(tr_as_sts_mul, tr_as_acts_mul):
        hashed_mul.append(json.dumps(sts_mul + acts_mul, sort_keys=True))
    hashed_mul = sorted(hashed_mul, reverse=True)

    data_mul = featurizer_mul.featurize_trackers(trackers_mul,
                                                 default_domain)

    assert hashed == hashed_mul

    assert np.all(data.X.sort(axis=0) == data_mul.X.sort(axis=0))
    assert np.all(data.y.sort(axis=0) == data_mul.y.sort(axis=0))
Exemplo n.º 3
0
def test_load_training_data_handles_hidden_files(tmpdir, default_domain):
    # create a hidden file

    open(os.path.join(tmpdir.strpath, ".hidden"), 'a').close()
    # create a normal file
    normal_file = os.path.join(tmpdir.strpath, "normal_file")
    open(normal_file, 'a').close()

    featurizer = MaxHistoryTrackerFeaturizer(BinarySingleStateFeaturizer(),
                                             max_history=2)
    trackers = training.load_data(tmpdir.strpath, default_domain)
    data = featurizer.featurize_trackers(trackers, default_domain)

    assert len(data.X) == 0
    assert len(data.y) == 0
Exemplo n.º 4
0
def test_load_training_data_handles_hidden_files(tmpdir, default_domain):
    # create a hidden file

    open(os.path.join(tmpdir.strpath, ".hidden"), 'a').close()
    # create a normal file
    normal_file = os.path.join(tmpdir.strpath, "normal_file")
    open(normal_file, 'a').close()

    featurizer = MaxHistoryTrackerFeaturizer(BinarySingleStateFeaturizer(),
                                             max_history=2)
    trackers = training.load_data(
        tmpdir.strpath,
        default_domain
    )
    data = featurizer.featurize_trackers(trackers,
                                         default_domain)

    assert len(data.X) == 0
    assert len(data.y) == 0
Exemplo n.º 5
0
def test_generate_training_data_with_cycles(tmpdir, default_domain):
    featurizer = MaxHistoryTrackerFeaturizer(BinarySingleStateFeaturizer(),
                                             max_history=4)
    training_trackers = training.load_data(
        "data/test_stories/stories_with_cycle.md",
        default_domain,
        augmentation_factor=0)

    training_data = featurizer.featurize_trackers(training_trackers,
                                                  default_domain)
    y = training_data.y.argmax(axis=-1)

    # how many there are depends on the graph which is not created in a
    # deterministic way but should always be 3 or
    assert len(training_trackers) == 3 or len(training_trackers) == 4

    # if we have 4 trackers, there is going to be one example more for label 2
    num_twos = len(training_trackers) - 1
    assert Counter(y) == {0: 6, 1: 2, 2: num_twos, 3: 1, 4: 3}
Exemplo n.º 6
0
def test_generate_training_data_with_cycles(tmpdir, default_domain):
    featurizer = MaxHistoryTrackerFeaturizer(BinarySingleStateFeaturizer(),
                                             max_history=4)
    training_trackers = training.load_data(
        "data/test_stories/stories_with_cycle.md",
        default_domain,
        augmentation_factor=0
    )

    training_data = featurizer.featurize_trackers(training_trackers,
                                                  default_domain)
    y = training_data.y.argmax(axis=-1)

    # how many there are depends on the graph which is not created in a
    # deterministic way but should always be 3 or
    assert len(training_trackers) == 3 or len(training_trackers) == 4

    # if we have 4 trackers, there is going to be one example more for label 3
    num_threes = len(training_trackers) - 1
    assert Counter(y) == {0: 6, 1: 2, 3: num_threes, 4: 1, 5: 3}