Exemplo n.º 1
0
 def test_divide_visibility(self):
     self.vis = create_blockvisibility(
         self.lowcore,
         self.times,
         self.frequency,
         channel_bandwidth=self.channel_bandwidth,
         phasecentre=self.phasecentre,
         weight=1.0,
         polarisation_frame=PolarisationFrame("stokesIQUV"))
     self.vis.data['vis'][..., :] = [2.0 + 0.0j, 0.0j, 0.0j, 2.0 + 0.0j]
     self.othervis = create_blockvisibility(
         self.lowcore,
         self.times,
         self.frequency,
         channel_bandwidth=self.channel_bandwidth,
         phasecentre=self.phasecentre,
         weight=1.0,
         polarisation_frame=PolarisationFrame("stokesIQUV"))
     self.othervis.data['vis'][..., :] = [
         1.0 + 0.0j, 0.0j, 0.0j, 1.0 + 0.0j
     ]
     self.ratiovis = divide_visibility(self.vis, self.othervis)
     assert self.ratiovis.nvis == self.vis.nvis
     assert numpy.max(numpy.abs(self.ratiovis.vis)) == 2.0, numpy.max(
         numpy.abs(self.ratiovis.vis))
 def test_solve_gaintable_stokesI_pointsource(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0])
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=10.0, amplitude_error=0.0)
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     point_vis = divide_visibility(self.vis, original)
     gtsol = solve_gaintable(point_vis, phase_only=False, niter=200)
     residual = numpy.max(gtsol.residual)
     assert residual < 3e-8, "Max residual = %s" % (residual)
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
Exemplo n.º 3
0
def solve_gaintable(vis: BlockVisibility,
                    modelvis: BlockVisibility = None,
                    gt=None,
                    phase_only=True,
                    niter=30,
                    tol=1e-8,
                    crosspol=False,
                    normalise_gains=True,
                    **kwargs) -> GainTable:
    """Solve a gain table by fitting an observed visibility to a model visibility

    If modelvis is None, a point source model is assumed.

    :param vis: BlockVisibility containing the observed data_models
    :param modelvis: BlockVisibility containing the visibility predicted by a model
    :param gt: Existing gaintable
    :param phase_only: Solve only for the phases (default=True)
    :param niter: Number of iterations (default 30)
    :param tol: Iteration stops when the fractional change in the gain solution is below this tolerance
    :param crosspol: Do solutions including cross polarisations i.e. XY, YX or RL, LR
    :return: GainTable containing solution

    """
    assert isinstance(vis, BlockVisibility), vis
    if modelvis is not None:
        assert isinstance(modelvis, BlockVisibility), modelvis
        assert numpy.max(numpy.abs(
            modelvis.vis)) > 0.0, "Model visibility is zero"

    if phase_only:
        log.debug('solve_gaintable: Solving for phase only')
    else:
        log.debug('solve_gaintable: Solving for complex gain')

    if gt is None:
        log.debug("solve_gaintable: creating new gaintable")
        gt = create_gaintable_from_blockvisibility(vis, **kwargs)
    else:
        log.debug("solve_gaintable: starting from existing gaintable")

    if modelvis is not None:
        pointvis = divide_visibility(vis, modelvis)
    else:
        pointvis = vis

    for row in range(gt.ntimes):
        vis_rows = numpy.abs(vis.time - gt.time[row]) < gt.interval[row] / 2.0
        if numpy.sum(vis_rows) > 0:
            x = numpy.sum(
                (pointvis.vis[vis_rows] * pointvis.weight[vis_rows]) *
                (1 - pointvis.flags[vis_rows]),
                axis=0)
            xwt = numpy.sum(pointvis.weight[vis_rows] *
                            (1 - pointvis.flags[vis_rows]),
                            axis=0)
            mask = numpy.abs(xwt) > 0.0
            if numpy.sum(mask) > 0:
                x_shape = x.shape
                x[mask] = x[mask] / xwt[mask]
                x[~mask] = 0.0
                xwt[mask] = xwt[mask] / numpy.max(xwt[mask])
                x = x.reshape(x_shape)

                if vis.npol == 1:
                    gt.data['gain'][row, ...], gt.data['weight'][row, ...], gt.data['residual'][row, ...] = \
                        solve_antenna_gains_itsubs_scalar(gt.data['gain'][row, ...],
                                                          gt.data['weight'][row, ...],
                                                          x, xwt, phase_only=phase_only, niter=niter,
                                                          tol=tol)
                elif vis.npol == 2:
                    gt.data['gain'][row, ...], gt.data['weight'][row, ...], gt.data['residual'][row, ...] = \
                        solve_antenna_gains_itsubs_nocrossdata(gt.data['gain'][row, ...], gt.data['weight'][row, ...],
                                                               x, xwt, phase_only=phase_only, niter=niter,
                                                               tol=tol)
                elif vis.npol == 4:
                    if crosspol:
                        gt.data['gain'][row, ...], gt.data['weight'][row, ...], gt.data['residual'][row, ...] = \
                            solve_antenna_gains_itsubs_matrix(gt.data['gain'][row, ...], gt.data['weight'][row, ...],
                                                              x, xwt, phase_only=phase_only, niter=niter,
                                                              tol=tol)
                    else:
                        gt.data['gain'][row, ...], gt.data['weight'][row, ...], gt.data['residual'][row, ...] = \
                            solve_antenna_gains_itsubs_vector(gt.data['gain'][row, ...], gt.data['weight'][row, ...],
                                                              x, xwt, phase_only=phase_only, niter=niter,
                                                              tol=tol)

                else:
                    gt.data['gain'][row, ...], gt.data['weight'][row, ...], \
                    gt.data['residual'][row, ...] = \
                        solve_antenna_gains_itsubs_scalar(gt.data['gain'][row, ...],
                                                          gt.data['weight'][row, ...],
                                                          x, xwt, phase_only=phase_only, niter=niter,
                                                          tol=tol)

                if normalise_gains and not phase_only:
                    gabs = numpy.average(numpy.abs(gt.data['gain'][row]))
                    gt.data['gain'][row] /= gabs
            else:
                gt.data['gain'][row, ...] = 1.0 + 0.0j
                gt.data['weight'][row, ...] = 0.0
                gt.data['residual'][row, ...] = 0.0

        else:
            log.warning("Gaintable {0}, vis time mismatch {1}".format(
                gt.time, vis.time))

    assert isinstance(gt, GainTable), "gt is not a GainTable: %r" % gt

    assert_vis_gt_compatible(vis, gt)

    return gt
Exemplo n.º 4
0
def solve_gaintable(vis: BlockVisibility,
                    modelvis: BlockVisibility = None,
                    gt=None,
                    phase_only=True,
                    niter=30,
                    tol=1e-8,
                    crosspol=False,
                    normalise_gains=True,
                    **kwargs) -> GainTable:
    """Solve a gain table by fitting an observed visibility to a model visibility

    If modelvis is None, a point source model is assumed.

    :param vis: BlockVisibility containing the observed data_models
    :param modelvis: BlockVisibility containing the visibility predicted by a model
    :param gt: Existing gaintable
    :param phase_only: Solve only for the phases (default=True)
    :param niter: Number of iterations (default 30)
    :param tol: Iteration stops when the fractional change in the gain solution is below this tolerance
    :param crosspol: Do solutions including cross polarisations i.e. XY, YX or RL, LR
    :return: GainTable containing solution

    """
    assert isinstance(vis, BlockVisibility), vis
    if modelvis is not None:
        assert isinstance(modelvis, BlockVisibility), modelvis
        assert numpy.max(numpy.abs(
            modelvis.vis)) > 0.0, "Model visibility is zero"

    if phase_only:
        log.debug('solve_gaintable: Solving for phase only')
    else:
        log.debug('solve_gaintable: Solving for complex gain')

    if gt is None:
        log.debug("solve_gaintable: creating new gaintable")
        gt = create_gaintable_from_blockvisibility(vis, **kwargs)
    else:
        log.debug("solve_gaintable: starting from existing gaintable")

    for row in range(gt.ntimes):
        vis_rows = numpy.abs(vis.time - gt.time[row]) < gt.interval[row] / 2.0
        if numpy.sum(vis_rows) > 0:
            subvis = create_visibility_from_rows(vis, vis_rows)
            if modelvis is not None:
                model_subvis = create_visibility_from_rows(modelvis, vis_rows)
                pointvis = divide_visibility(subvis, model_subvis)
                x = numpy.sum(pointvis.vis * pointvis.weight, axis=0)
                xwt = numpy.sum(pointvis.weight, axis=0)
            else:
                x = numpy.sum(subvis.vis * subvis.weight, axis=0)
                xwt = numpy.sum(subvis.weight, axis=0)

            mask = numpy.abs(xwt) > 0.0
            x_shape = x.shape
            x[mask] = x[mask] / xwt[mask]
            x[~mask] = 0.0
            x = x.reshape(x_shape)

            gt = solve_from_X(gt,
                              x,
                              xwt,
                              row,
                              crosspol,
                              niter,
                              phase_only,
                              tol,
                              npol=vis.polarisation_frame.npol)
            if normalise_gains and not phase_only:
                gabs = numpy.average(numpy.abs(gt.data['gain'][row]))
                gt.data['gain'][row] /= gabs

    assert isinstance(gt, GainTable), "gt is not a GainTable: %r" % gt

    assert_vis_gt_compatible(vis, gt)

    return gt