Exemplo n.º 1
0
 def __init__(self, attn, checkpoint):
     super(SetupModel, self).__init__()
     self.data = Input()
     self.output = None
     self.saver = None
     self.best_saver = None
     self.train_gv_summaries_op = None
     self.val_init_op_list = None
     self.train_init_op_list = None
     self.train_op_list = None
     self.train_summaries_op = None
     self.val_op_list = None
     self.attn = attn
     self.checkpoint = checkpoint
Exemplo n.º 2
0
def main():
    data = Input(split='train', mode='subt')
    model = Model(data)

    for v in tf.global_variables():
        print(v)
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    # config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
    with tf.Session(config=config) as sess:
        sess.run([model.data.initializer, tf.global_variables_initializer()],
                 feed_dict=data.feed_dict)

        # q, a, s = sess.run([model.ques_enc, model.ans_enc, model.subt_enc])
        # print(q.shape, a.shape, s.shape)
        # a, b, c, d = sess.run(model.tri_word_encodes)
        # print(a, b, c, d)
        # print(a.shape, b.shape, c.shape, d.shape)
        a, b = sess.run([model.subt, model.abs])
        print(a, b)
        print(a.shape, b.shape)
Exemplo n.º 3
0
    def __init__(self):

        if reset:
            if os.path.exists(self._checkpoint_dir):
                os.system('rm -rf %s' % self._checkpoint_dir)
            if os.path.exists(self._log_dir):
                os.system('rm -rf %s' % self._log_dir)
            if os.path.exists(self._attn_dir):
                os.system('rm -rf %s' % self._attn_dir)

        fu.make_dirs(os.path.join(self._checkpoint_dir, 'best'))
        fu.make_dirs(self._log_dir)
        fu.make_dirs(self._attn_dir)

        self.train_data = Input(split='train', mode=args.mode)
        self.val_data = Input(split='val', mode=args.mode)
        # self.test_data = TestInput()

        self.train_model = mod.Model(self.train_data,
                                     scale=hp['reg'],
                                     training=True)
        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            self.val_model = mod.Model(self.val_data)

        # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        #     self.test_model = mod.Model(self.test_data, training=False)

        for v in tf.trainable_variables():
            print(v)

        self.main_loss = mu.get_loss(hp['loss'], self.train_data.gt,
                                     self.train_model.output)
        self.regu_loss = tf.losses.get_regularization_loss()

        self.loss = 0
        self.loss += self.main_loss
        self.loss += self.regu_loss

        self.train_answer = tf.argmax(self.train_model.output, axis=1)
        self.train_accuracy, self.train_accuracy_update, self.train_accuracy_initializer \
            = mu.get_acc(self.train_data.gt, self.train_answer, name='train_accuracy')

        self.val_answer = tf.argmax(self.val_model.output, axis=1)
        self.val_accuracy, self.val_accuracy_update, self.val_accuracy_initializer \
            = mu.get_acc(self.val_data.gt, tf.argmax(self.val_model.output, axis=1), name='val_accuracy')

        self.global_step = tf.train.get_or_create_global_step()

        decay_step = int(hp['decay_epoch'] * len(self.train_data))
        self.learning_rate = mu.get_lr(hp['decay_type'], hp['learning_rate'],
                                       self.global_step, decay_step,
                                       hp['decay_rate'])

        self.optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)

        grads_and_vars = self.optimizer.compute_gradients(self.loss)

        lang_grads_and_vars = [(grad, var) for grad, var in grads_and_vars
                               if 'Visual' not in var.name]
        vis_grad_and_vars = [(grad, var) for grad, var in grads_and_vars
                             if 'Visual' in var.name]

        self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(self.update_ops):
            self.lang_train_op = tf.group(
                self.optimizer.apply_gradients(lang_grads_and_vars,
                                               self.global_step),
                self.train_accuracy_update)
            self.vis_train_op = tf.group(
                self.optimizer.apply_gradients(vis_grad_and_vars,
                                               self.global_step),
                self.train_accuracy_update)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        if args.checkpoint:
            self.checkpoint_file = args.checkpoint
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(
                self._checkpoint_dir)

        self.train_init_op_list = [
            self.train_data.initializer, self.train_accuracy_initializer
        ]

        self.val_init_op_list = [
            self.val_data.initializer, self.val_accuracy_initializer
        ]

        self.lang_train_op_list = [
            self.lang_train_op, self.loss, self.train_accuracy,
            self.global_step
        ]
        self.vis_train_op_list = [
            self.vis_train_op, self.loss, self.train_accuracy, self.global_step
        ]

        self.val_op_list = [self.val_accuracy, self.val_accuracy_update]

        if attn:
            self.lang_train_op_list += [
                self.train_model.attn, self.train_model.belief,
                self.train_data.gt, self.train_answer
            ]
            self.vis_train_op_list += [
                self.train_model.attn, self.train_model.belief,
                self.train_data.gt, self.train_answer
            ]
            self.val_op_list += [
                self.val_model.attn, self.val_model.belief, self.val_data.gt,
                self.val_answer
            ]
Exemplo n.º 4
0
    def __init__(self):

        if reset:
            if os.path.exists(self._checkpoint_dir):
                os.system('rm -rf %s' % self._checkpoint_dir)
            if os.path.exists(self._log_dir):
                os.system('rm -rf %s' % self._log_dir)

        fu.make_dirs(os.path.join(self._checkpoint_dir, 'best'))
        fu.make_dirs(self._log_dir)

        self.train_data = Input(split='train', mode=args.mode)
        self.val_data = Input(split='val', mode=args.mode)
        # self.test_data = TestInput()

        self.train_model = mod.Model(self.train_data, beta=hp['reg'], training=True)
        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            self.val_model = mod.Model(self.val_data)

        # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        #     self.test_model = mod.Model(self.test_data, training=False)

        for v in tf.trainable_variables():
            print(v)

        self.main_loss = mu.get_loss(hp['loss'], self.train_data.gt, self.train_model.output)
        self.real_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
            logits=self.train_model.real_logit, labels=tf.ones_like(self.train_model.real_logit)))
        self.fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
            logits=self.train_model.fake_logit, labels=tf.zeros_like(self.train_model.fake_logit)))
        self.d_loss = self.real_loss + self.fake_loss
        self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
            logits=self.train_model.fake_logit, labels=tf.ones_like(self.train_model.fake_logit)))
        self.regu_loss = tf.losses.get_regularization_loss()

        self.loss = self.g_loss
        self.loss += self.main_loss
        self.loss += self.regu_loss

        self.d_loss += self.regu_loss

        self.train_accuracy, self.train_accuracy_update, self.train_accuracy_initializer \
            = mu.get_acc(self.train_data.gt, tf.argmax(self.train_model.output, axis=1), name='train_accuracy')

        self.val_accuracy, self.val_accuracy_update, self.val_accuracy_initializer \
            = mu.get_acc(self.val_data.gt, tf.argmax(self.val_model.output, axis=1), name='val_accuracy')

        self.global_step = tf.train.get_or_create_global_step()

        decay_step = int(hp['decay_epoch'] * len(self.train_data))
        self.learning_rate = mu.get_lr(hp['decay_type'], hp['learning_rate'], self.global_step,
                                       decay_step, hp['decay_rate'])

        self.optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)
        self.d_optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)

        grads_and_vars = self.optimizer.compute_gradients(self.loss, var_list=tf.trainable_variables('QA'))
        gradients, variables = list(zip(*grads_and_vars))
        self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(self.update_ops):
            self.train_op = tf.group(self.optimizer.apply_gradients(grads_and_vars),
                                     self.d_optimizer.minimize(self.d_loss, self.global_step,
                                                               tf.trainable_variables('Discriminator')),
                                     self.train_accuracy_update)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        # Summary
        train_gv_summaries = []
        for idx, grad in enumerate(gradients):
            if grad is not None:
                train_gv_summaries.append(tf.summary.histogram('gradients/' + variables[idx].name, grad))
                train_gv_summaries.append(tf.summary.histogram(variables[idx].name, variables[idx]))

        train_summaries = [
            tf.summary.scalar('train_loss', self.loss),
            tf.summary.scalar('train_accuracy', self.train_accuracy),
            tf.summary.scalar('learning_rate', self.learning_rate)
        ]
        self.train_summaries_op = tf.summary.merge(train_summaries)
        self.train_gv_summaries_op = tf.summary.merge(train_gv_summaries + train_summaries)

        self.val_summaries_op = tf.summary.scalar('val_accuracy', self.val_accuracy)

        if args.checkpoint:
            self.checkpoint_file = args.checkpoint
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(self._checkpoint_dir)

        self.train_init_op_list = [self.train_data.initializer, self.train_accuracy_initializer]

        self.val_init_op_list = [self.val_data.initializer, self.val_accuracy_initializer]

        self.train_op_list = [self.train_op, self.loss, self.train_accuracy, self.global_step]
        # self.run_metadata = tf.RunMetadata()
        self.val_op_list = [self.val_accuracy, self.val_accuracy_update, self.val_summaries_op]
Exemplo n.º 5
0
    def __init__(self):

        if reset:
            if os.path.exists(self._checkpoint_dir):
                os.system('rm -rf %s' % self._checkpoint_dir)
            if os.path.exists(self._log_dir):
                os.system('rm -rf %s' % self._log_dir)
            if os.path.exists(self._attn_dir):
                os.system('rm -rf %s' % self._attn_dir)

        fu.make_dirs(os.path.join(self._checkpoint_dir, 'best'))
        fu.make_dirs(self._log_dir)
        fu.make_dirs(self._attn_dir)

        self.train_data = Input(split='train', mode=args.mode)
        self.val_data = Input(split='val', mode=args.mode)
        # self.test_data = TestInput()

        self.train_model = mod.Model(self.train_data,
                                     scale=hp['reg'],
                                     training=True)
        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            self.val_model = mod.Model(self.val_data)

        # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        #     self.test_model = mod.Model(self.test_data, training=False)

        for v in tf.trainable_variables():
            print(v)

        self.main_loss = mu.get_loss(hp['loss'], self.train_data.gt,
                                     self.train_model.output)
        self.regu_loss = tf.losses.get_regularization_loss()

        self.loss = 0
        self.loss += self.main_loss
        self.loss += self.regu_loss

        self.train_answer = tf.argmax(self.train_model.output, axis=1)
        self.train_accuracy, self.train_accuracy_update, self.train_accuracy_initializer \
            = mu.get_acc(self.train_data.gt, self.train_answer, name='train_accuracy')

        self.val_answer = tf.argmax(self.val_model.output, axis=1)
        self.val_accuracy, self.val_accuracy_update, self.val_accuracy_initializer \
            = mu.get_acc(self.val_data.gt, tf.argmax(self.val_model.output, axis=1), name='val_accuracy')

        self.global_step = tf.train.get_or_create_global_step()

        decay_step = int(hp['decay_epoch'] * len(self.train_data))
        self.learning_rate = mu.get_lr(hp['decay_type'], hp['learning_rate'],
                                       self.global_step, decay_step,
                                       hp['decay_rate'])

        self.optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)

        grads_and_vars = self.optimizer.compute_gradients(self.loss)
        # grads_and_vars = [(tf.clip_by_norm(grad, 0.01, axes=[0]), var) if grad is not None else (grad, var)
        #                   for grad, var in grads_and_vars ]
        gradients, variables = list(zip(*grads_and_vars))
        self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(self.update_ops):
            self.train_op = tf.group(
                self.optimizer.apply_gradients(grads_and_vars,
                                               self.global_step),
                self.train_accuracy_update)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        # Summary
        train_gv_summaries = []
        for idx, grad in enumerate(gradients):
            if grad is not None:
                train_gv_summaries.append(
                    tf.summary.histogram('gradients/' + variables[idx].name,
                                         grad))
                train_gv_summaries.append(
                    tf.summary.histogram(variables[idx].name, variables[idx]))

        train_summaries = [
            tf.summary.scalar('train_loss', self.loss),
            tf.summary.scalar('train_accuracy', self.train_accuracy),
            tf.summary.scalar('learning_rate', self.learning_rate)
        ]
        self.train_summaries_op = tf.summary.merge(train_summaries)
        self.train_gv_summaries_op = tf.summary.merge(train_gv_summaries +
                                                      train_summaries)

        self.val_summaries_op = tf.summary.scalar('val_accuracy',
                                                  self.val_accuracy)

        if args.checkpoint:
            self.checkpoint_file = args.checkpoint
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(
                self._checkpoint_dir)

        self.train_init_op_list = [
            self.train_data.initializer, self.train_accuracy_initializer
        ]

        self.val_init_op_list = [
            self.val_data.initializer, self.val_accuracy_initializer
        ]

        self.train_op_list = [
            self.train_op, self.loss, self.train_accuracy, self.global_step
        ]

        self.val_op_list = [
            self.val_accuracy, self.val_accuracy_update, self.val_summaries_op
        ]

        if attn:
            self.train_op_list += [
                self.train_model.attn, self.train_model.belief,
                self.train_data.gt, self.train_answer
            ]
            self.val_op_list += [
                self.val_model.attn, self.val_model.belief, self.val_data.gt,
                self.val_answer
            ]
Exemplo n.º 6
0
    def __init__(self):

        if reset:
            if os.path.exists(self._checkpoint_dir):
                os.system('rm -rf %s' % self._checkpoint_dir)
            if os.path.exists(self._log_dir):
                os.system('rm -rf %s' % self._log_dir)

        fu.make_dirs(os.path.join(self._checkpoint_dir, 'best'))
        fu.make_dirs(self._log_dir)

        self.train_data = Input(split='train', mode=args.mode)
        self.step_data = Input(split='train', mode=args.mode)
        self.val_data = Input(split='val', mode=args.mode)
        # self.test_data = TestInput()

        self.train_model = mod.Model(self.train_data, training=True)

        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            self.val_model = mod.Model(self.val_data)
        # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        #     self.test_model = mod.Model(self.test_data, training=False)

        for v in tf.trainable_variables():
            print(v)

        self.loss = tf.losses.sparse_softmax_cross_entropy(
            self.train_data.gt, self.train_model.output)

        if args.reg:
            self.loss += tf.losses.get_regularization_loss()

        self.train_accuracy, self.train_accuracy_update = tf.metrics.accuracy(
            self.train_data.gt,
            tf.argmax(self.train_model.output, axis=1),
            name='train_accuracy')
        self.train_accuracy_initializer = tf.variables_initializer(
            tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES,
                              scope='train_accuracy'))

        self.val_accuracy, self.val_accuracy_update = tf.metrics.accuracy(
            self.val_data.gt,
            tf.argmax(self.val_model.output, axis=1),
            name='val_accuracy')
        self.val_accuracy_initializer = tf.variables_initializer(
            tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES,
                              scope='val_accuracy'))

        self.global_step = tf.train.get_or_create_global_step()

        self.learning_rate = mu.get_lr(
            hp['decay_type'], hp['learning_rate'], self.global_step,
            hp['decay_epoch'] * len(self.train_data), hp['decay_rate'])

        self.optimizer = mu.get_opt(hp['opt'], self.learning_rate)

        grads_and_vars = self.optimizer.compute_gradients(self.loss)
        gradients, variables = list(zip(*grads_and_vars))
        self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(self.update_ops):
            self.train_op = tf.group(
                self.optimizer.apply_gradients(grads_and_vars,
                                               self.global_step),
                self.train_accuracy_update)
        with tf.control_dependencies([self.train_op]):
            with tf.variable_scope(tf.get_variable_scope(), reuse=True):
                self.step_model = mod.Model(self.step_data)
            gamma = tf.equal(self.step_data.gt,
                             tf.argmax(self.step_model.output, axis=1))
            neg_grads_and_vars = [(tf.where(
                tf.logical_and(gamma, tf.ones_like(g, dtype=tf.bool)),
                self.train_accuracy * g,
                -(1 + self.train_accuracy / 2) * g), v)
                                  for g, v in grads_and_vars]
            self.roll_back = self.optimizer.apply_gradients(neg_grads_and_vars)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        # Summary
        train_gv_summaries = []
        for idx, grad in enumerate(gradients):
            if grad is not None:
                train_gv_summaries.append(tf.summary.histogram(
                    grad.name, grad))
                train_gv_summaries.append(
                    tf.summary.histogram(variables[idx].name, variables[idx]))

        train_summaries = [
            tf.summary.scalar('train_loss', self.loss),
            tf.summary.scalar('train_accuracy', self.train_accuracy),
            tf.summary.scalar('learning_rate', self.learning_rate)
        ]
        self.train_summaries_op = tf.summary.merge(train_summaries)
        self.train_gv_summaries_op = tf.summary.merge(train_gv_summaries +
                                                      train_summaries)

        self.val_summaries_op = tf.summary.scalar('val_accuracy',
                                                  self.val_accuracy)

        if args.checkpoint:
            self.checkpoint_file = args.checkpoint
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(
                self._checkpoint_dir)
Exemplo n.º 7
0
    def __init__(self):

        if reset:
            if os.path.exists(self._checkpoint_dir):
                os.system('rm -rf %s' % self._checkpoint_dir)
            if os.path.exists(self._log_dir):
                os.system('rm -rf %s' % self._log_dir)
            if os.path.exists(self._attn_dir):
                os.system('rm -rf %s' % self._attn_dir)

        fu.make_dirs(os.path.join(self._checkpoint_dir, 'best'))
        fu.make_dirs(self._log_dir)
        fu.make_dirs(self._attn_dir)

        self.train_data = Input(split='train', mode=args.mode)
        self.val_data = Input(split='val', mode=args.mode)
        # self.test_data = TestInput()

        self.train_model = mod.Model(self.train_data, beta=hp['reg'], training=True)
        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            self.val_model = mod.Model(self.val_data)

        # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        #     self.test_model = mod.Model(self.test_data, training=False)

        for v in tf.trainable_variables():
            print(v)

        self.train_attn = tf.squeeze(self.train_model.attn[self.train_data.gt[0]])
        self.val_attn = tf.squeeze(self.val_model.attn[self.val_data.gt[0]])
        self.main_loss = mu.get_loss(hp['loss'], self.train_data.gt, self.train_model.output)
        self.attn_loss = mu.get_loss('hinge', tf.to_float(self.train_data.spec), self.train_attn)
        self.regu_loss = tf.losses.get_regularization_loss()

        self.loss = 0
        if 'main' in target:
            self.loss += self.main_loss
        elif 'attn' in target:
            self.loss += self.attn_loss
        self.loss += self.regu_loss

        self.train_acc, self.train_acc_update, self.train_acc_init = \
            mu.get_acc(self.train_data.gt, tf.argmax(self.train_model.output, axis=1), name='train_accuracy')

        self.train_attn_acc, self.train_attn_acc_update, self.train_attn_acc_init = \
            mu.get_acc(self.train_data.spec, tf.to_int32(self.train_attn > 0.5), name='train_attention_accuracy')

        # self.train_q_attn_acc, self.train_q_attn_acc_update, self.train_q_attn_acc_init = \
        #     tf.metrics.accuracy(self.train_data.spec, self.train_model.output, name='train_q_attention_accuracy')
        #
        # self.train_a_attn_acc, self.train_a_attn_acc_update, self.train_a_attn_acc_init = \
        #     tf.metrics.accuracy(self.train_data.spec, self.train_model.output, name='train_a_attention_accuracy')

        self.val_acc, self.val_acc_update, self.val_acc_init = \
            mu.get_acc(self.val_data.gt, tf.argmax(self.val_model.output, axis=1), name='val_accuracy')

        self.val_attn_acc, self.val_attn_acc_update, self.val_attn_acc_init = \
            mu.get_acc(self.val_data.spec, tf.to_int32(self.val_attn > 0.5), name='val_attention_accuracy')

        # self.val_q_attn_acc, self.val_q_attn_acc_update, self.val_q_attn_acc_init = \
        #     tf.metrics.accuracy(self.train_data.spec, self.train_model.output, name='val_q_attention_accuracy')
        #
        # self.val_a_attn_acc, self.val_a_attn_acc_update, self.val_a_attn_acc_init = \
        #     tf.metrics.accuracy(self.train_data.spec, self.train_model.output, name='val_a_attention_accuracy')

        self.global_step = tf.train.get_or_create_global_step()

        decay_step = int(hp['decay_epoch'] * len(self.train_data))
        self.learning_rate = mu.get_lr(hp['decay_type'], hp['learning_rate'], self.global_step,
                                       decay_step, hp['decay_rate'])

        self.optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)

        grads_and_vars = self.optimizer.compute_gradients(self.loss)
        gradients, variables = list(zip(*grads_and_vars))
        self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(self.update_ops):
            self.train_op = tf.group(self.optimizer.apply_gradients(grads_and_vars, self.global_step),
                                     self.train_acc_update,
                                     self.train_attn_acc_update)  # self.train_a_attn_acc_update, self.train_q_attn_acc_update)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        # Summary
        train_gv_summaries = []
        for idx, grad in enumerate(gradients):
            if grad is not None:
                train_gv_summaries.append(tf.summary.histogram('gradients/' + variables[idx].name, grad))
                train_gv_summaries.append(tf.summary.histogram(variables[idx].name, variables[idx]))

        train_summaries = [
            tf.summary.scalar('train_loss', self.loss),
            tf.summary.scalar('train_accuracy', self.train_acc),
            # tf.summary.scalar('train_a_attn_accuracy', self.train_a_attn_acc),
            # tf.summary.scalar('train_q_attn_accuracy', self.train_q_attn_acc),
            tf.summary.scalar('train_attn_accuracy', self.train_attn_acc),
            tf.summary.scalar('learning_rate', self.learning_rate)
        ]
        self.train_summaries_op = tf.summary.merge(train_summaries)
        self.train_gv_summaries_op = tf.summary.merge(train_gv_summaries + train_summaries)

        val_summaries = [
            tf.summary.scalar('val_accuracy', self.val_acc),
            tf.summary.scalar('val_attn_accuracy', self.val_attn_acc),
            # tf.summary.scalar('val_a_attn_accuracy', self.val_a_attn_acc),
            # tf.summary.scalar('val_q_attn_accuracy', self.val_q_attn_acc),
        ]
        self.val_summaries_op = tf.summary.merge(val_summaries)

        if args.checkpoint:
            self.checkpoint_file = args.checkpoint
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(self._checkpoint_dir)

        self.train_init_op_list = [self.train_data.initializer, self.train_acc_init,
                                   # self.train_q_attn_acc_init, self.train_a_attn_acc_init,
                                   self.train_attn_acc_init]

        self.val_init_op_list = [self.val_data.initializer, self.val_acc_init,
                                 # self.val_q_attn_acc_init, self.val_a_attn_acc_init,
                                 self.val_attn_acc_init]

        self.train_op_list = [self.train_op, self.loss, self.attn_loss, self.train_acc,
                              self.train_attn_acc,  # self.val_q_attn_acc, self.val_a_attn_acc,
                              self.global_step, self.train_data.spec, self.train_attn]
        self.val_op_list = [self.val_acc, self.val_attn_acc,  # self.val_q_attn_acc, self.val_a_attn_acc,
                            tf.group(self.val_acc_update, self.val_attn_acc_update
                                     # self.val_q_attn_acc_update, self.val_a_attn_acc_update
                                     ),
                            self.val_summaries_op, self.val_data.spec, self.val_attn]