Exemplo n.º 1
0
    def setup(self,
              runtime_env: RuntimeEnv,
              context: RuntimeEnvContext,
              logger: Optional[logging.Logger] = default_logger):
        if not runtime_env.has_pip():
            return

        logger.debug(f"Setting up pip for runtime_env: {runtime_env}")
        pip_packages: List[str] = runtime_env.pip_packages()
        target_dir = self._get_path_from_hash(_get_pip_hash(pip_packages))

        _install_pip_list_to_dir(pip_packages, target_dir, logger=logger)

        # Despite Ray being removed from the input pip list during validation,
        # other packages in the pip list (for example, xgboost_ray) may
        # themselves include Ray as a dependency.  In this case, we will have
        # inadvertently installed the latest Ray version in the target_dir,
        # which may cause Ray version mismatch issues. Uninstall it here, if it
        # exists, to make the workers use the Ray that is already
        # installed in the cluster.
        #
        # In the case where the user explicitly wants to include Ray in their
        # pip list (and signals this by setting the environment variable below)
        # then we don't want this deletion logic, so we skip it.
        if os.environ.get(RAY_RUNTIME_ENV_ALLOW_RAY_IN_PIP) != 1:
            ray_path = Path(target_dir) / "ray"
            if ray_path.exists() and ray_path.is_dir():
                shutil.rmtree(ray_path)

        # Insert the target directory into the PYTHONPATH.
        python_path = target_dir
        if "PYTHONPATH" in context.env_vars:
            python_path += os.pathsep + context.env_vars["PYTHONPATH"]
        context.env_vars["PYTHONPATH"] = python_path
Exemplo n.º 2
0
    def setup(
        self,
        runtime_env: RuntimeEnv,
        context: RuntimeEnvContext,
        logger: Optional[logging.Logger] = default_logger,
    ):
        if not runtime_env.has_py_container(
        ) or not runtime_env.py_container_image():
            return

        container_driver = "podman"
        container_command = [
            container_driver,
            "run",
            "-v",
            self._ray_tmp_dir + ":" + self._ray_tmp_dir,
            "--cgroup-manager=cgroupfs",
            "--network=host",
            "--pid=host",
            "--ipc=host",
            "--env-host",
        ]
        container_command.append("--env")
        container_command.append("RAY_RAYLET_PID=" +
                                 os.getenv("RAY_RAYLET_PID"))
        if runtime_env.py_container_run_options():
            container_command.extend(runtime_env.py_container_run_options())
        # TODO(chenk008): add resource limit
        container_command.append("--entrypoint")
        container_command.append("python")
        container_command.append(runtime_env.py_container_image())
        context.py_executable = " ".join(container_command)
        logger.info("start worker in container with prefix: {}".format(
            context.py_executable))
Exemplo n.º 3
0
    def setup(
        self,
        runtime_env: RuntimeEnv,
        context: RuntimeEnvContext,
        logger: Optional[logging.Logger] = default_logger,
    ):
        if not runtime_env.has_conda():
            return

        logger.debug("Setting up conda or pip for runtime_env: "
                     f"{runtime_env.serialize()}")

        if runtime_env.conda_env_name():
            conda_env_name = runtime_env.conda_env_name()
        else:
            protocol, hash = parse_uri(runtime_env.conda_uri())
            conda_env_name = self._get_path_from_hash(hash)

            conda_dict = _get_conda_dict_with_ray_inserted(runtime_env,
                                                           logger=logger)

            # It is not safe for multiple processes to install conda envs
            # concurrently, even if the envs are different, so use a global
            # lock for all conda installs.
            # See https://github.com/ray-project/ray/issues/17086
            file_lock_name = "ray-conda-install.lock"
            with FileLock(os.path.join(self._resources_dir, file_lock_name)):
                try:
                    conda_yaml_file = os.path.join(self._resources_dir,
                                                   "environment.yml")
                    with open(conda_yaml_file, "w") as file:
                        yaml.dump(conda_dict, file)

                    if conda_env_name in self._created_envs:
                        logger.debug(f"Conda env {conda_env_name} already "
                                     "created, skipping creation.")
                    else:
                        create_conda_env(conda_yaml_file,
                                         prefix=conda_env_name,
                                         logger=logger)
                        self._created_envs.add(conda_env_name)
                finally:
                    os.remove(conda_yaml_file)

                if runtime_env.get_extension("_inject_current_ray"):
                    _inject_ray_to_conda_site(conda_path=conda_env_name,
                                              logger=logger)

        context.py_executable = "python"
        context.command_prefix += get_conda_activate_commands(conda_env_name)
        logger.info(
            f"Finished setting up runtime environment at {conda_env_name}")
Exemplo n.º 4
0
Arquivo: conda.py Projeto: ijrsvt/ray
    def create(
        self,
        uri: Optional[str],
        runtime_env: RuntimeEnv,
        context: RuntimeEnvContext,
        logger: Optional[logging.Logger] = default_logger,
    ) -> int:
        logger.debug("Setting up conda for runtime_env: " f"{runtime_env.serialize()}")
        protocol, hash = parse_uri(uri)
        conda_env_name = self._get_path_from_hash(hash)

        conda_dict = _get_conda_dict_with_ray_inserted(runtime_env, logger=logger)

        logger.info(f"Setting up conda environment with {runtime_env}")
        with FileLock(self._installs_and_deletions_file_lock):
            try:
                conda_yaml_file = os.path.join(self._resources_dir, "environment.yml")
                with open(conda_yaml_file, "w") as file:
                    yaml.dump(conda_dict, file)
                create_conda_env_if_needed(
                    conda_yaml_file, prefix=conda_env_name, logger=logger
                )
            finally:
                os.remove(conda_yaml_file)

            if runtime_env.get_extension("_inject_current_ray") == "True":
                _inject_ray_to_conda_site(conda_path=conda_env_name, logger=logger)
        logger.info(f"Finished creating conda environment at {conda_env_name}")
        return get_directory_size_bytes(conda_env_name)
Exemplo n.º 5
0
    def create(
        self,
        uri: str,
        runtime_env: RuntimeEnv,
        context: RuntimeEnvContext,
        logger: Optional[logging.Logger] = default_logger,
    ) -> int:
        logger.debug("Setting up pip for runtime_env: "
                     f"{runtime_env.serialize()}")
        protocol, hash = parse_uri(uri)
        target_dir = self._get_path_from_hash(hash)

        pip_packages: List[str] = runtime_env.pip_packages()
        with FileLock(self._installs_and_deletions_file_lock):
            _install_pip_list_to_dir(pip_packages, target_dir, logger=logger)

            # Despite Ray being removed from the input pip list during
            # validation, other packages in the pip list (for example,
            # xgboost_ray) may themselves include Ray as a dependency.  In this
            # case, we will have inadvertently installed the latest Ray version
            # in the target_dir, which may cause Ray version mismatch issues.
            # Uninstall it here, if it exists, to make the workers use the Ray
            # that is already installed in the cluster.
            #
            # In the case where the user explicitly wants to include Ray in
            # their pip list (and signals this by setting the environment
            # variable below) then we don't want this deletion logic, so we
            # skip it.
            if os.environ.get(RAY_RUNTIME_ENV_ALLOW_RAY_IN_PIP) != 1:
                ray_path = Path(target_dir) / "ray"
                if ray_path.exists() and ray_path.is_dir():
                    shutil.rmtree(ray_path)
        return get_directory_size_bytes(target_dir)
def test_get_conda_dict_with_ray_inserted_m1_wheel(monkeypatch):
    # Disable dev mode to prevent Ray dependencies being automatically inserted
    # into the conda dict.
    if os.environ.get("RAY_RUNTIME_ENV_LOCAL_DEV_MODE") is not None:
        monkeypatch.delenv("RAY_RUNTIME_ENV_LOCAL_DEV_MODE")
    if os.environ.get("RAY_CI_POST_WHEEL_TESTS") is not None:
        monkeypatch.delenv("RAY_CI_POST_WHEEL_TESTS")
    monkeypatch.setattr(ray, "__version__", "1.9.0")
    monkeypatch.setattr(ray, "__commit__", "92599d9127e228fe8d0a2d94ca75754ec21c4ae4")
    monkeypatch.setattr(sys, "version_info", (3, 9, 7, "final", 0))
    # Simulate running on an M1 Mac.
    monkeypatch.setattr(sys, "platform", "darwin")
    monkeypatch.setattr(platform, "machine", lambda: "arm64")

    input_conda = {"dependencies": ["blah", "pip", {"pip": ["pip_pkg"]}]}
    runtime_env = RuntimeEnv(ParsedRuntimeEnv({"conda": input_conda}).serialize())
    output_conda = _get_conda_dict_with_ray_inserted(runtime_env)
    # M1 wheels are not uploaded to AWS S3.  So rather than have an S3 URL
    # inserted as a dependency, we should just have the string "ray==1.9.0".
    assert output_conda == {
        "dependencies": [
            "blah",
            "pip",
            {"pip": ["ray==1.9.0", "ray[default]", "pip_pkg"]},
            "python=3.9.7",
        ]
    }
Exemplo n.º 7
0
    def get_proto_runtime_env(self):
        """Return the protobuf structure of runtime env."""
        if self._cached_pb is None:
            self._cached_pb = RuntimeEnv.from_dict(self, get_conda_uri,
                                                   get_pip_uri)

        return self._cached_pb
Exemplo n.º 8
0
Arquivo: conda.py Projeto: ijrsvt/ray
    def modify_context(
        self,
        uri: str,
        runtime_env: RuntimeEnv,
        context: RuntimeEnvContext,
        logger: Optional[logging.Logger] = default_logger,
    ):
        if not runtime_env.has_conda():
            return

        if runtime_env.conda_env_name():
            conda_env_name = runtime_env.conda_env_name()
        else:
            protocol, hash = parse_uri(runtime_env.conda_uri())
            conda_env_name = self._get_path_from_hash(hash)
        context.py_executable = "python"
        context.command_prefix += get_conda_activate_commands(conda_env_name)
Exemplo n.º 9
0
Arquivo: conda.py Projeto: ijrsvt/ray
def _get_conda_dict_with_ray_inserted(
    runtime_env: RuntimeEnv, logger: Optional[logging.Logger] = default_logger
) -> Dict[str, Any]:
    """Returns the conda spec with the Ray and `python` dependency inserted."""
    conda_dict = json.loads(runtime_env.conda_config())
    assert conda_dict is not None

    ray_pip = current_ray_pip_specifier(logger=logger)
    if ray_pip:
        extra_pip_dependencies = [ray_pip, "ray[default]"]
    elif runtime_env.get_extension("_inject_current_ray") == "True":
        extra_pip_dependencies = _resolve_install_from_source_ray_dependencies()
    else:
        extra_pip_dependencies = []
    conda_dict = inject_dependencies(
        conda_dict, _current_py_version(), extra_pip_dependencies
    )
    return conda_dict
Exemplo n.º 10
0
    def setup(self,
              runtime_env: RuntimeEnv,
              context: RuntimeEnvContext,
              logger: Optional[logging.Logger] = default_logger):
        if not runtime_env.py_modules():
            return

        module_dirs = []
        for uri in runtime_env.py_modules():
            module_dir = download_and_unpack_package(
                uri, self._resources_dir, logger=logger)
            module_dirs.append(module_dir)

        # Insert the py_modules directories into the PYTHONPATH.
        python_path = os.pathsep.join(module_dirs)
        if "PYTHONPATH" in context.env_vars:
            python_path += os.pathsep + context.env_vars["PYTHONPATH"]
        context.env_vars["PYTHONPATH"] = python_path
Exemplo n.º 11
0
    def setup(self,
              runtime_env: RuntimeEnv,
              context: RuntimeEnvContext,
              logger: Optional[logging.Logger] = default_logger):
        if not runtime_env.working_dir():
            return

        logger.info(f"Setup working dir for {runtime_env.working_dir()}")
        working_dir = download_and_unpack_package(runtime_env.working_dir(),
                                                  self._resources_dir,
                                                  logger=logger)
        context.command_prefix += [f"cd {working_dir}"]

        # Insert the working_dir as the first entry in PYTHONPATH. This is
        # compatible with users providing their own PYTHONPATH in env_vars.
        python_path = working_dir
        if "PYTHONPATH" in context.env_vars:
            python_path += os.pathsep + context.env_vars["PYTHONPATH"]
        context.env_vars["PYTHONPATH"] = python_path
Exemplo n.º 12
0
def test_sync_job_config(shutdown_only):
    num_java_workers_per_process = 8
    runtime_env = {"env_vars": {"key": "value"}}

    ray.init(job_config=ray.job_config.JobConfig(
        num_java_workers_per_process=num_java_workers_per_process,
        runtime_env=runtime_env))

    # Check that the job config is synchronized at the driver side.
    job_config = ray.worker.global_worker.core_worker.get_job_config()
    assert (job_config.num_java_workers_per_process ==
            num_java_workers_per_process)
    job_runtime_env = RuntimeEnv(serialized_runtime_env=job_config.
                                 runtime_env_info.serialized_runtime_env)
    assert job_runtime_env.env_vars() == runtime_env["env_vars"]

    @ray.remote
    def get_job_config():
        job_config = ray.worker.global_worker.core_worker.get_job_config()
        return job_config.SerializeToString()

    # Check that the job config is synchronized at the worker side.
    job_config = gcs_utils.JobConfig()
    job_config.ParseFromString(ray.get(get_job_config.remote()))
    assert (job_config.num_java_workers_per_process ==
            num_java_workers_per_process)
    job_runtime_env = RuntimeEnv(serialized_runtime_env=job_config.
                                 runtime_env_info.serialized_runtime_env)
    assert job_runtime_env.env_vars() == runtime_env["env_vars"]
Exemplo n.º 13
0
    async def create(
        self,
        uri: str,
        runtime_env: RuntimeEnv,
        context: RuntimeEnvContext,
        logger: Optional[logging.Logger] = default_logger,
    ) -> int:
        if not runtime_env.has_pip():
            return 0

        protocol, hash = parse_uri(uri)
        target_dir = self._get_path_from_hash(hash)

        with FileLock(self._installs_and_deletions_file_lock):
            pip_processor = PipProcessor(target_dir, runtime_env, logger)
            pip_processor.run()

        return get_directory_size_bytes(target_dir)
Exemplo n.º 14
0
    def modify_context(
        self,
        uri: str,
        runtime_env: RuntimeEnv,
        context: RuntimeEnvContext,
        logger: Optional[logging.Logger] = default_logger,
    ):
        if not runtime_env.has_pip():
            return
        # Update py_executable.
        protocol, hash = parse_uri(uri)
        target_dir = self._get_path_from_hash(hash)
        virtualenv_python = _PathHelper.get_virtualenv_python(target_dir)

        if not os.path.exists(virtualenv_python):
            raise ValueError(
                f"Local directory {target_dir} for URI {uri} does "
                "not exist on the cluster. Something may have gone wrong while "
                "installing the runtime_env `pip` packages.")
        context.py_executable = virtualenv_python
Exemplo n.º 15
0
 def modify_context(
     self,
     uri: str,
     runtime_env: RuntimeEnv,
     context: RuntimeEnvContext,
     logger: Optional[logging.Logger] = default_logger,
 ):
     if not runtime_env.has_pip():
         return
     # Insert the target directory into the PYTHONPATH.
     protocol, hash = parse_uri(uri)
     target_dir = get_local_dir_from_uri(uri, self._resources_dir)
     if not target_dir.exists():
         raise ValueError(
             f"Local directory {target_dir} for URI {uri} does "
             "not exist on the cluster. Something may have gone wrong while "
             "installing the runtime_env `pip` packages.")
     python_path = str(target_dir)
     if "PYTHONPATH" in context.env_vars:
         python_path += os.pathsep + context.env_vars["PYTHONPATH"]
     context.env_vars["PYTHONPATH"] = python_path
Exemplo n.º 16
0
            def run_setup_with_logger():
                runtime_env = RuntimeEnv(
                    serialized_runtime_env=serialized_runtime_env)
                allocated_resource: dict = json.loads(
                    serialized_allocated_resource_instances or "{}")

                # Use a separate logger for each job.
                per_job_logger = self.get_or_create_logger(request.job_id)
                # TODO(chenk008): Add log about allocated_resource to
                # avoid lint error. That will be moved to cgroup plugin.
                per_job_logger.debug(f"Worker has resource :"
                                     f"{allocated_resource}")
                context = RuntimeEnvContext(env_vars=runtime_env.env_vars())
                self._conda_manager.setup(runtime_env,
                                          context,
                                          logger=per_job_logger)
                self._py_modules_manager.setup(runtime_env,
                                               context,
                                               logger=per_job_logger)
                self._working_dir_manager.setup(runtime_env,
                                                context,
                                                logger=per_job_logger)
                self._container_manager.setup(runtime_env,
                                              context,
                                              logger=per_job_logger)

                # Add the mapping of URIs -> the serialized environment to be
                # used for cache invalidation.
                if runtime_env.working_dir_uri():
                    uri = runtime_env.working_dir_uri()
                    self._uris_to_envs[uri].add(serialized_runtime_env)
                if runtime_env.py_modules_uris():
                    for uri in runtime_env.py_modules_uris():
                        self._uris_to_envs[uri].add(serialized_runtime_env)
                if runtime_env.conda_uri():
                    uri = runtime_env.conda_uri()
                    self._uris_to_envs[uri].add(serialized_runtime_env)
                if runtime_env.plugin_uris():
                    for uri in runtime_env.plugin_uris():
                        self._uris_to_envs[uri].add(serialized_runtime_env)

                # Run setup function from all the plugins
                for plugin_class_path, config in runtime_env.plugins():
                    logger.debug(
                        f"Setting up runtime env plugin {plugin_class_path}")
                    plugin_class = import_attr(plugin_class_path)
                    # TODO(simon): implement uri support
                    plugin_class.create("uri not implemented",
                                        json.loads(config), context)
                    plugin_class.modify_context("uri not implemented",
                                                json.loads(config), context)

                return context
Exemplo n.º 17
0
 def get_uri(self, runtime_env: RuntimeEnv) -> Optional[str]:
     working_dir_uri = runtime_env.working_dir()
     if working_dir_uri != "":
         return working_dir_uri
     return None
Exemplo n.º 18
0
Arquivo: conda.py Projeto: ijrsvt/ray
 def get_uri(self, runtime_env: RuntimeEnv) -> Optional[str]:
     """Return the conda URI from the RuntimeEnv if it exists, else None."""
     conda_uri = runtime_env.conda_uri()
     if conda_uri != "":
         return conda_uri
     return None
Exemplo n.º 19
0
 def deserialize(cls, serialized: str) -> "ParsedRuntimeEnv":
     runtime_env = RuntimeEnv(serialized_runtime_env=serialized)
     return cls(runtime_env.to_dict(), _validate=False)
Exemplo n.º 20
0
            def run_setup_with_logger():
                runtime_env = RuntimeEnv(serialized_runtime_env=serialized_runtime_env)
                allocated_resource: dict = json.loads(
                    serialized_allocated_resource_instances or "{}"
                )

                # Use a separate logger for each job.
                per_job_logger = self.get_or_create_logger(request.job_id)
                # TODO(chenk008): Add log about allocated_resource to
                # avoid lint error. That will be moved to cgroup plugin.
                per_job_logger.debug(f"Worker has resource :" f"{allocated_resource}")
                context = RuntimeEnvContext(env_vars=runtime_env.env_vars())
                self._container_manager.setup(
                    runtime_env, context, logger=per_job_logger
                )

                for (manager, uri_cache) in [
                    (self._working_dir_manager, self._working_dir_uri_cache),
                    (self._conda_manager, self._conda_uri_cache),
                    (self._pip_manager, self._pip_uri_cache),
                ]:
                    uri = manager.get_uri(runtime_env)
                    if uri is not None:
                        if uri not in uri_cache:
                            per_job_logger.debug(f"Cache miss for URI {uri}.")
                            size_bytes = manager.create(
                                uri, runtime_env, context, logger=per_job_logger
                            )
                            uri_cache.add(uri, size_bytes, logger=per_job_logger)
                        else:
                            per_job_logger.debug(f"Cache hit for URI {uri}.")
                            uri_cache.mark_used(uri, logger=per_job_logger)
                    manager.modify_context(uri, runtime_env, context)

                # Set up py_modules. For now, py_modules uses multiple URIs so
                # the logic is slightly different from working_dir, conda, and
                # pip above.
                py_modules_uris = self._py_modules_manager.get_uris(runtime_env)
                if py_modules_uris is not None:
                    for uri in py_modules_uris:
                        if uri not in self._py_modules_uri_cache:
                            per_job_logger.debug(f"Cache miss for URI {uri}.")
                            size_bytes = self._py_modules_manager.create(
                                uri, runtime_env, context, logger=per_job_logger
                            )
                            self._py_modules_uri_cache.add(
                                uri, size_bytes, logger=per_job_logger
                            )
                        else:
                            per_job_logger.debug(f"Cache hit for URI {uri}.")
                            self._py_modules_uri_cache.mark_used(
                                uri, logger=per_job_logger
                            )
                self._py_modules_manager.modify_context(
                    py_modules_uris, runtime_env, context
                )

                # Add the mapping of URIs -> the serialized environment to be
                # used for cache invalidation.
                if runtime_env.working_dir_uri():
                    uri = runtime_env.working_dir_uri()
                    self._uris_to_envs[uri].add(serialized_runtime_env)
                if runtime_env.py_modules_uris():
                    for uri in runtime_env.py_modules_uris():
                        self._uris_to_envs[uri].add(serialized_runtime_env)
                if runtime_env.conda_uri():
                    uri = runtime_env.conda_uri()
                    self._uris_to_envs[uri].add(serialized_runtime_env)
                if runtime_env.pip_uri():
                    uri = runtime_env.pip_uri()
                    self._uris_to_envs[uri].add(serialized_runtime_env)
                if runtime_env.plugin_uris():
                    for uri in runtime_env.plugin_uris():
                        self._uris_to_envs[uri].add(serialized_runtime_env)

                # Run setup function from all the plugins
                for plugin_class_path, config in runtime_env.plugins():
                    per_job_logger.debug(
                        f"Setting up runtime env plugin {plugin_class_path}"
                    )
                    plugin_class = import_attr(plugin_class_path)
                    # TODO(simon): implement uri support
                    plugin_class.create(
                        "uri not implemented", json.loads(config), context
                    )
                    plugin_class.modify_context(
                        "uri not implemented", json.loads(config), context
                    )

                return context
Exemplo n.º 21
0
 def get_uri(self, runtime_env: RuntimeEnv) -> Optional[str]:
     """Return the pip URI from the RuntimeEnv if it exists, else None."""
     pip_uri = runtime_env.pip_uri()
     if pip_uri != "":
         return pip_uri
     return None