Exemplo n.º 1
0
    def make_remote_evaluators(self, env_creator, policy_graph, count,
                               remote_args):
        """Convenience method to return a number of remote evaluators."""

        cls = CommonPolicyEvaluator.as_remote(**remote_args).remote
        return [
            self._make_evaluator(cls, env_creator, policy_graph, i + 1)
            for i in range(count)
        ]
 def testMetrics(self):
     ev = CommonPolicyEvaluator(
         env_creator=lambda _: MockEnv(episode_length=10),
         policy_graph=MockPolicyGraph, batch_mode="complete_episodes")
     remote_ev = CommonPolicyEvaluator.as_remote().remote(
         env_creator=lambda _: MockEnv(episode_length=10),
         policy_graph=MockPolicyGraph, batch_mode="complete_episodes")
     ev.sample()
     ray.get(remote_ev.sample.remote())
     result = collect_metrics(ev, [remote_ev])
     self.assertEqual(result.episodes_total, 20)
     self.assertEqual(result.episode_reward_mean, 10)
Exemplo n.º 3
0
 def _testWithOptimizer(self, optimizer_cls):
     n = 3
     env = gym.make("CartPole-v0")
     act_space = env.action_space
     obs_space = env.observation_space
     dqn_config = {"gamma": 0.95, "n_step": 3}
     if optimizer_cls == SyncReplayOptimizer:
         # TODO: support replay with non-DQN graphs. Currently this can't
         # happen since the replay buffer doesn't encode extra fields like
         # "advantages" that PG uses.
         policies = {
             "p1": (DQNPolicyGraph, obs_space, act_space, dqn_config),
             "p2": (DQNPolicyGraph, obs_space, act_space, dqn_config),
         }
     else:
         policies = {
             "p1": (PGPolicyGraph, obs_space, act_space, {}),
             "p2": (DQNPolicyGraph, obs_space, act_space, dqn_config),
         }
     ev = CommonPolicyEvaluator(
         env_creator=lambda _: MultiCartpole(n),
         policy_graph=policies,
         policy_mapping_fn=lambda agent_id: ["p1", "p2"][agent_id % 2],
         batch_steps=50)
     if optimizer_cls == AsyncGradientsOptimizer:
         remote_evs = [CommonPolicyEvaluator.as_remote().remote(
             env_creator=lambda _: MultiCartpole(n),
             policy_graph=policies,
             policy_mapping_fn=lambda agent_id: ["p1", "p2"][agent_id % 2],
             batch_steps=50)]
     else:
         remote_evs = []
     optimizer = optimizer_cls(ev, remote_evs, {})
     for i in range(200):
         ev.foreach_policy(
             lambda p, _: p.set_epsilon(max(0.02, 1 - i * .02))
             if isinstance(p, DQNPolicyGraph) else None)
         optimizer.step()
         result = collect_metrics(ev, remote_evs)
         if i % 20 == 0:
             ev.foreach_policy(
                 lambda p, _: p.update_target()
                 if isinstance(p, DQNPolicyGraph) else None)
             print("Iter {}, rew {}".format(i, result.policy_reward_mean))
             print("Total reward", result.episode_reward_mean)
         if result.episode_reward_mean >= 25 * n:
             return
     print(result)
     raise Exception("failed to improve reward")