Exemplo n.º 1
0
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    if config["microbatch_size"]:
        num_microbatches = math.ceil(config["train_batch_size"] /
                                     config["microbatch_size"])
        # In microbatch mode, we want to compute gradients on experience
        # microbatches, average a number of these microbatches, and then apply
        # the averaged gradient in one SGD step. This conserves GPU memory,
        # allowing for extremely large experience batches to be used.
        train_op = (
            rollouts.combine(
                ConcatBatches(min_batch_size=config["microbatch_size"],
                              count_steps_by=config["multiagent"]
                              ["count_steps_by"])).for_each(
                                  ComputeGradients(workers))  # (grads, info)
            .batch(num_microbatches)  # List[(grads, info)]
            .for_each(AverageGradients())  # (avg_grads, info)
            .for_each(ApplyGradients(workers)))
    else:
        # In normal mode, we execute one SGD step per each train batch.
        train_op = rollouts.combine(
            ConcatBatches(min_batch_size=config["train_batch_size"],
                          count_steps_by=config["multiagent"]
                          ["count_steps_by"])).for_each(TrainOneStep(workers))

    return StandardMetricsReporting(train_op, workers, config)
Exemplo n.º 2
0
def execution_plan(workers, config):
    # For A3C, compute policy gradients remotely on the rollout workers.
    # rollouts = ParallelRollouts(workers, mode="bulk_sync")

    grads = AsyncGradients(workers)
    
    # Apply the gradients as they arrive. We set update_all to False so that
    # only the worker sending the gradient is updated with new weights.
    #train_op = grads.for_each(ApplyGradients(workers, update_all=False))
    print("_____")
    print(workers)
    temp1 = workers
    temp2 = workers
    rem1 = workers.remote_workers()[0:6]
    rem2 = workers.remote_workers()[6:11]
    temp1.reset(rem1)
    temp2.reset(rem2)
  
    rollouts1 = ParallelRollouts(temp1, mode="bulk_sync")
    rollouts2 = ParallelRollouts(temp2, mode="bulk_sync")


    train_step_op1 = TrainTFMultiGPU(
                workers=temp1,
                sgd_minibatch_size=config["train_batch_size"],
                num_sgd_iter=1,
                num_gpus=config["num_gpus"],
                shuffle_sequences=True,
                _fake_gpus=config["_fake_gpus"],
                framework=config.get("framework"))

    train_step_op2 = TrainTFMultiGPU(
                    workers=temp2,
                    sgd_minibatch_size=config["train_batch_size"],
                    num_sgd_iter=1,
                    num_gpus=config["num_gpus"],
                    shuffle_sequences=True,
                    _fake_gpus=config["_fake_gpus"],
                    framework=config.get("framework"))

    train_op1 = rollouts1.combine(
            ConcatBatches(
                min_batch_size=config["train_batch_size"],
                count_steps_by=config["multiagent"][
                    "count_steps_by"])).for_each(train_step_op1)
    train_op2 = rollouts2.combine(
            ConcatBatches(
                min_batch_size=config["train_batch_size"],
                count_steps_by=config["multiagent"][
                    "count_steps_by"])).for_each(train_step_op2)
    
    #train_op = grads.for_each(ApplyGradients(workers, update_all=False))
    
    
    return StandardMetricsReporting(train_op1, temp1, config).union(StandardMetricsReporting(train_op2, temp2, config))
Exemplo n.º 3
0
def execution_plan(workers: WorkerSet, config: TrainerConfigDict,
                   **kwargs) -> LocalIterator[dict]:
    """Execution plan of the A2C algorithm. Defines the distributed
    dataflow.

    Args:
        workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
            of the Trainer.
        config (TrainerConfigDict): The trainer's configuration dict.

    Returns:
        LocalIterator[dict]: A local iterator over training metrics.
    """
    assert len(kwargs) == 0, (
        "A2C execution_plan does NOT take any additional parameters")

    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    if config["microbatch_size"]:
        num_microbatches = math.ceil(config["train_batch_size"] /
                                     config["microbatch_size"])
        # In microbatch mode, we want to compute gradients on experience
        # microbatches, average a number of these microbatches, and then apply
        # the averaged gradient in one SGD step. This conserves GPU memory,
        # allowing for extremely large experience batches to be used.
        train_op = (
            rollouts.combine(
                ConcatBatches(min_batch_size=config["microbatch_size"],
                              count_steps_by=config["multiagent"]
                              ["count_steps_by"])).for_each(
                                  ComputeGradients(workers))  # (grads, info)
            .batch(num_microbatches)  # List[(grads, info)]
            .for_each(AverageGradients())  # (avg_grads, info)
            .for_each(ApplyGradients(workers)))
    else:
        # In normal mode, we execute one SGD step per each train batch.
        if config["simple_optimizer"]:
            train_step_op = TrainOneStep(workers)
        else:
            train_step_op = MultiGPUTrainOneStep(
                workers=workers,
                sgd_minibatch_size=config["train_batch_size"],
                num_sgd_iter=1,
                num_gpus=config["num_gpus"],
                shuffle_sequences=True,
                _fake_gpus=config["_fake_gpus"],
                framework=config.get("framework"))

        train_op = rollouts.combine(
            ConcatBatches(min_batch_size=config["train_batch_size"],
                          count_steps_by=config["multiagent"]
                          ["count_steps_by"])).for_each(train_step_op)

    return StandardMetricsReporting(train_op, workers, config)
Exemplo n.º 4
0
    def execution_plan(
        workers: WorkerSet, config: TrainerConfigDict, **kwargs
    ) -> LocalIterator[dict]:
        assert (
            len(kwargs) == 0
        ), "A2C execution_plan does NOT take any additional parameters"

        rollouts = ParallelRollouts(workers, mode="bulk_sync")

        if config["microbatch_size"]:
            num_microbatches = math.ceil(
                config["train_batch_size"] / config["microbatch_size"]
            )
            # In microbatch mode, we want to compute gradients on experience
            # microbatches, average a number of these microbatches, and then
            # apply the averaged gradient in one SGD step. This conserves GPU
            # memory, allowing for extremely large experience batches to be
            # used.
            train_op = (
                rollouts.combine(
                    ConcatBatches(
                        min_batch_size=config["microbatch_size"],
                        count_steps_by=config["multiagent"]["count_steps_by"],
                    )
                )
                .for_each(ComputeGradients(workers))  # (grads, info)
                .batch(num_microbatches)  # List[(grads, info)]
                .for_each(AverageGradients())  # (avg_grads, info)
                .for_each(ApplyGradients(workers))
            )
        else:
            # In normal mode, we execute one SGD step per each train batch.
            if config["simple_optimizer"]:
                train_step_op = TrainOneStep(workers)
            else:
                train_step_op = MultiGPUTrainOneStep(
                    workers=workers,
                    sgd_minibatch_size=config["train_batch_size"],
                    num_sgd_iter=1,
                    num_gpus=config["num_gpus"],
                    _fake_gpus=config["_fake_gpus"],
                )

            train_op = rollouts.combine(
                ConcatBatches(
                    min_batch_size=config["train_batch_size"],
                    count_steps_by=config["multiagent"]["count_steps_by"],
                )
            ).for_each(train_step_op)

        return StandardMetricsReporting(train_op, workers, config)
Exemplo n.º 5
0
def execution_plan(workers, config, **kwargs):
    assert len(kwargs) == 0, (
        "Alpha zero execution_plan does NOT take any additional parameters")

    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    if config["simple_optimizer"]:
        train_op = rollouts.combine(
            ConcatBatches(
                min_batch_size=config["train_batch_size"],
                count_steps_by=config["multiagent"]["count_steps_by"],
            )).for_each(
                TrainOneStep(workers, num_sgd_iter=config["num_sgd_iter"]))
    else:
        replay_buffer = SimpleReplayBuffer(config["buffer_size"])

        store_op = rollouts \
            .for_each(StoreToReplayBuffer(local_buffer=replay_buffer))

        replay_op = Replay(local_buffer=replay_buffer) \
            .filter(WaitUntilTimestepsElapsed(config["learning_starts"])) \
            .combine(
            ConcatBatches(
                min_batch_size=config["train_batch_size"],
                count_steps_by=config["multiagent"]["count_steps_by"],
            )) \
            .for_each(TrainOneStep(
                workers, num_sgd_iter=config["num_sgd_iter"]))

        train_op = Concurrently(
            [store_op, replay_op], mode="round_robin", output_indexes=[1])

    return StandardMetricsReporting(train_op, workers, config)
Exemplo n.º 6
0
def test_concat_batches(ray_start_regular_shared):
    workers = make_workers(0)
    a = ParallelRollouts(workers, mode="async")
    b = a.combine(ConcatBatches(1000))
    assert next(b).count == 1000
    timers = b.shared_metrics.get().timers
    assert "sample" in timers
Exemplo n.º 7
0
def default_execution_plan(workers: WorkerSet, config: TrainerConfigDict):
    # Collects experiences in parallel from multiple RolloutWorker actors.
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # Combine experiences batches until we hit `train_batch_size` in size.
    # Then, train the policy on those experiences and update the workers.
    train_op = rollouts.combine(
        ConcatBatches(
            min_batch_size=config["train_batch_size"],
            count_steps_by=config["multiagent"]["count_steps_by"],
        ))

    if config.get("simple_optimizer") is True:
        train_op = train_op.for_each(TrainOneStep(workers))
    else:
        train_op = train_op.for_each(
            MultiGPUTrainOneStep(
                workers=workers,
                sgd_minibatch_size=config.get("sgd_minibatch_size",
                                              config["train_batch_size"]),
                num_sgd_iter=config.get("num_sgd_iter", 1),
                num_gpus=config["num_gpus"],
                shuffle_sequences=config.get("shuffle_sequences", False),
                _fake_gpus=config["_fake_gpus"],
                framework=config["framework"]))

    # Add on the standard episode reward, etc. metrics reporting. This returns
    # a LocalIterator[metrics_dict] representing metrics for each train step.
    return StandardMetricsReporting(train_op, workers, config)
Exemplo n.º 8
0
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # Collect large batches of relevant experiences & standardize.
    rollouts = rollouts.for_each(
        SelectExperiences(workers.trainable_policies()))
    rollouts = rollouts.combine(
        ConcatBatches(min_batch_size=config["train_batch_size"]))
    rollouts = rollouts.for_each(StandardizeFields(["advantages"]))

    if config["simple_optimizer"]:
        train_op = rollouts.for_each(
            TrainOneStep(
                workers,
                num_sgd_iter=config["num_sgd_iter"],
                sgd_minibatch_size=config["sgd_minibatch_size"]))
    else:
        train_op = rollouts.for_each(
            TrainTFMultiGPU(
                workers,
                sgd_minibatch_size=config["sgd_minibatch_size"],
                num_sgd_iter=config["num_sgd_iter"],
                num_gpus=config["num_gpus"],
                rollout_fragment_length=config["rollout_fragment_length"],
                num_envs_per_worker=config["num_envs_per_worker"],
                train_batch_size=config["train_batch_size"],
                shuffle_sequences=config["shuffle_sequences"],
                _fake_gpus=config["_fake_gpus"]))

    # Update KL after each round of training.
    train_op = train_op.for_each(lambda t: t[1]).for_each(UpdateKL(workers))

    return StandardMetricsReporting(train_op, workers, config) \
        .for_each(lambda result: warn_about_bad_reward_scales(config, result))
Exemplo n.º 9
0
def execution_plan(workers: WorkerSet,
                   config: TrainerConfigDict) -> LocalIterator[dict]:
    """Execution plan of the PPO algorithm. Defines the distributed dataflow.

    Args:
        workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
            of the Trainer.
        config (TrainerConfigDict): The trainer's configuration dict.

    Returns:
        LocalIterator[dict]: The Policy class to use with PPOTrainer.
            If None, use `default_policy` provided in build_trainer().
    """
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # Collect batches for the trainable policies.
    rollouts = rollouts.for_each(
        SelectExperiences(workers.trainable_policies()))
    # Concatenate the SampleBatches into one.
    rollouts = rollouts.combine(
        ConcatBatches(
            min_batch_size=config["train_batch_size"],
            count_steps_by=config["multiagent"]["count_steps_by"],
        ))
    # Standardize advantages.
    rollouts = rollouts.for_each(StandardizeFields(["advantages"]))

    # Perform one training step on the combined + standardized batch.
    if config["simple_optimizer"]:
        train_op = rollouts.for_each(
            TrainOneStep(
                workers,
                num_sgd_iter=config["num_sgd_iter"],
                sgd_minibatch_size=config["sgd_minibatch_size"]))
    else:
        train_op = rollouts.for_each(
            TrainTFMultiGPU(
                workers,
                sgd_minibatch_size=config["sgd_minibatch_size"],
                num_sgd_iter=config["num_sgd_iter"],
                num_gpus=config["num_gpus"],
                rollout_fragment_length=config["rollout_fragment_length"],
                num_envs_per_worker=config["num_envs_per_worker"],
                train_batch_size=config["train_batch_size"],
                shuffle_sequences=config["shuffle_sequences"],
                _fake_gpus=config["_fake_gpus"],
                framework=config.get("framework")))

    # Update KL after each round of training.
    train_op = train_op.for_each(lambda t: t[1]).for_each(UpdateKL(workers))

    # Warn about bad reward scales and return training metrics.
    return StandardMetricsReporting(train_op, workers, config) \
        .for_each(lambda result: warn_about_bad_reward_scales(config, result))
Exemplo n.º 10
0
Arquivo: a2c.py Projeto: zivzone/ray
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    if config["microbatch_size"]:
        num_microbatches = math.ceil(config["train_batch_size"] /
                                     config["microbatch_size"])
        # In microbatch mode, we want to compute gradients on experience
        # microbatches, average a number of these microbatches, and then apply
        # the averaged gradient in one SGD step. This conserves GPU memory,
        # allowing for extremely large experience batches to be used.
        train_op = (
            rollouts.combine(
                ConcatBatches(min_batch_size=config["microbatch_size"],
                              count_steps_by=config["multiagent"]
                              ["count_steps_by"])).for_each(
                                  ComputeGradients(workers))  # (grads, info)
            .batch(num_microbatches)  # List[(grads, info)]
            .for_each(AverageGradients())  # (avg_grads, info)
            .for_each(ApplyGradients(workers)))
    else:
        # In normal mode, we execute one SGD step per each train batch.
        if config["simple_optimizer"]:
            train_step_op = TrainOneStep(workers)
        else:
            train_step_op = TrainTFMultiGPU(
                workers=workers,
                sgd_minibatch_size=config["train_batch_size"],
                num_sgd_iter=1,
                num_gpus=config["num_gpus"],
                shuffle_sequences=True,
                _fake_gpus=config["_fake_gpus"],
                framework=config.get("framework"))

        train_op = rollouts.combine(
            ConcatBatches(min_batch_size=config["train_batch_size"],
                          count_steps_by=config["multiagent"]
                          ["count_steps_by"])).for_each(train_step_op)

    return StandardMetricsReporting(train_op, workers, config)
Exemplo n.º 11
0
def off_policy_execution_plan(workers: WorkerSet, config: TrainerConfigDict):
    """RLlib's default execution plan with an added warmup phase."""
    # Collects experiences in parallel from multiple RolloutWorker actors.
    rollouts = ParallelRollouts(workers, mode="bulk_sync")
    # On the first iteration, combine experience batches until we hit `learning_starts`
    # in size.
    rollouts = rollouts.combine(
        LearningStarts(learning_starts=config["learning_starts"]))
    # Then, train the policy on those experiences and update the workers.
    train_op = rollouts.for_each(TrainOneStep(workers))

    # Add on the standard episode reward, etc. metrics reporting. This returns
    # a LocalIterator[metrics_dict] representing metrics for each train step.
    return StandardMetricsReporting(train_op, workers, config)
Exemplo n.º 12
0
def default_execution_plan(workers: WorkerSet, config: TrainerConfigDict):
    # Collects experiences in parallel from multiple RolloutWorker actors.
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # Combine experiences batches until we hit `train_batch_size` in size.
    # Then, train the policy on those experiences and update the workers.
    train_op = rollouts.combine(
        ConcatBatches(
            min_batch_size=config["train_batch_size"],
            count_steps_by=config["multiagent"]["count_steps_by"],
        )).for_each(TrainOneStep(workers))

    # Add on the standard episode reward, etc. metrics reporting. This returns
    # a LocalIterator[metrics_dict] representing metrics for each train step.
    return StandardMetricsReporting(train_op, workers, config)
Exemplo n.º 13
0
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # Collect large batches of relevant experiences & standardize.
    rollouts = rollouts.for_each(
        SelectExperiences(workers.trainable_policies()))
    rollouts = rollouts.combine(
        ConcatBatches(min_batch_size=config["train_batch_size"]))
    rollouts = rollouts.for_each(StandardizeFields(["advantages"]))

    if config["simple_optimizer"]:
        train_op = rollouts.for_each(
            TrainOneStep(workers,
                         num_sgd_iter=config["num_sgd_iter"],
                         sgd_minibatch_size=config["sgd_minibatch_size"]))
    else:
        train_op = rollouts.for_each(
            TrainTFMultiGPU(
                workers,
                sgd_minibatch_size=config["sgd_minibatch_size"],
                num_sgd_iter=config["num_sgd_iter"],
                num_gpus=config["num_gpus"],
                rollout_fragment_length=config["rollout_fragment_length"],
                num_envs_per_worker=config["num_envs_per_worker"],
                train_batch_size=config["train_batch_size"],
                shuffle_sequences=config["shuffle_sequences"],
                _fake_gpus=config["_fake_gpus"]))

    # Callback to update the KL based on optimization info.
    def update_kl(item):
        _, fetches = item

        def update(pi, pi_id):
            if pi_id in fetches:
                pi.update_kl(fetches[pi_id]["kl"])
            else:
                logger.warning("No data for {}, not updating kl".format(pi_id))

        workers.local_worker().foreach_trainable_policy(update)

    # Update KL after each round of training.
    train_op = train_op.for_each(update_kl)

    return StandardMetricsReporting(train_op, workers, config) \
        .for_each(lambda result: _warn_about_bad_reward_scales(config, result))
Exemplo n.º 14
0
Arquivo: ppo.py Projeto: ijrsvt/ray
    def execution_plan(workers: WorkerSet, config: TrainerConfigDict,
                       **kwargs) -> LocalIterator[dict]:
        assert (len(kwargs) == 0
                ), "PPO execution_plan does NOT take any additional parameters"

        rollouts = ParallelRollouts(workers, mode="bulk_sync")

        # Collect batches for the trainable policies.
        rollouts = rollouts.for_each(
            SelectExperiences(local_worker=workers.local_worker()))
        # Concatenate the SampleBatches into one.
        rollouts = rollouts.combine(
            ConcatBatches(
                min_batch_size=config["train_batch_size"],
                count_steps_by=config["multiagent"]["count_steps_by"],
            ))
        # Standardize advantages.
        rollouts = rollouts.for_each(StandardizeFields(["advantages"]))

        # Perform one training step on the combined + standardized batch.
        if config["simple_optimizer"]:
            train_op = rollouts.for_each(
                TrainOneStep(
                    workers,
                    num_sgd_iter=config["num_sgd_iter"],
                    sgd_minibatch_size=config["sgd_minibatch_size"],
                ))
        else:
            train_op = rollouts.for_each(
                MultiGPUTrainOneStep(
                    workers=workers,
                    sgd_minibatch_size=config["sgd_minibatch_size"],
                    num_sgd_iter=config["num_sgd_iter"],
                    num_gpus=config["num_gpus"],
                    _fake_gpus=config["_fake_gpus"],
                ))

        # Update KL after each round of training.
        train_op = train_op.for_each(lambda t: t[1]).for_each(
            UpdateKL(workers))

        # Warn about bad reward scales and return training metrics.
        return StandardMetricsReporting(train_op, workers, config).for_each(
            lambda result: warn_about_bad_reward_scales(config, result))