Exemplo n.º 1
0
def kl_and_loss_stats(policy: Policy,
                      train_batch: SampleBatch) -> Dict[str, TensorType]:
    """Stats function for PPO. Returns a dict with important KL and loss stats.

    Args:
        policy (Policy): The Policy to generate stats for.
        train_batch (SampleBatch): The SampleBatch (already) used for training.

    Returns:
        Dict[str, TensorType]: The stats dict.
    """
    return {
        "cur_kl_coeff":
        policy.kl_coeff,
        "cur_lr":
        policy.cur_lr,
        "total_loss":
        policy._total_loss,
        "policy_loss":
        policy._mean_policy_loss,
        "vf_loss":
        policy._mean_vf_loss,
        "vf_explained_var":
        explained_variance(train_batch[Postprocessing.VALUE_TARGETS],
                           policy.model.value_function()),
        "kl":
        policy._mean_kl,
        "entropy":
        policy._mean_entropy,
        "entropy_coeff":
        policy.entropy_coeff,
    }
Exemplo n.º 2
0
def marwil_loss(policy, model, dist_class, train_batch):
    model_out, _ = model.from_batch(train_batch)
    action_dist = dist_class(model_out, model)
    state_values = model.value_function()
    advantages = train_batch[Postprocessing.ADVANTAGES]
    actions = train_batch[SampleBatch.ACTIONS]

    # Advantage estimation.
    adv = advantages - state_values
    adv_squared = torch.mean(torch.pow(adv, 2.0))

    # Value loss.
    policy.v_loss = 0.5 * adv_squared

    # Policy loss.
    # Update averaged advantage norm.
    policy.ma_adv_norm.add_(1e-6 * (adv_squared - policy.ma_adv_norm))
    # Exponentially weighted advantages.
    exp_advs = torch.exp(policy.config["beta"] *
                         (adv / (1e-8 + torch.pow(policy.ma_adv_norm, 0.5))))
    # log\pi_\theta(a|s)
    logprobs = action_dist.logp(actions)
    policy.p_loss = -1.0 * torch.mean(exp_advs.detach() * logprobs)

    # Combine both losses.
    policy.total_loss = policy.p_loss + policy.config["vf_coeff"] * \
        policy.v_loss
    explained_var = explained_variance(advantages, state_values)
    policy.explained_variance = torch.mean(explained_var)

    return policy.total_loss
Exemplo n.º 3
0
def stats(policy, train_batch):
    values_batched = make_time_major(
        policy,
        train_batch.get("seq_lens"),
        policy.model.value_function(),
        drop_last=policy.config["vtrace"])

    stats_dict = {
        "cur_lr": policy.cur_lr,
        "policy_loss": policy.loss.pi_loss,
        "entropy": policy.loss.entropy,
        "var_gnorm": global_norm(policy.model.trainable_variables()),
        "vf_loss": policy.loss.vf_loss,
        "vf_explained_var": explained_variance(
            torch.reshape(policy.loss.value_targets, [-1]),
            torch.reshape(values_batched, [-1])),
    }

    if policy.config["vtrace"]:
        is_stat_mean = torch.mean(policy.loss.is_ratio, [0, 1])
        is_stat_var = torch.var(policy.loss.is_ratio, [0, 1])
        stats_dict.update({"mean_IS": is_stat_mean})
        stats_dict.update({"var_IS": is_stat_var})

    if policy.config["use_kl_loss"]:
        stats_dict.update({"kl": policy.loss.mean_kl})
        stats_dict.update({"KL_Coeff": policy.kl_coeff})

    return stats_dict
Exemplo n.º 4
0
def kl_and_loss_stats(policy, train_batch):
    return {
        "cur_kl_coeff": policy.kl_coeff,
        "cur_lr": policy.cur_lr,
        "total_loss": policy.loss_obj.loss,
        "policy_loss": policy.loss_obj.mean_policy_loss,
        "vf_loss": policy.loss_obj.mean_vf_loss,
        "vf_explained_var": explained_variance(
            train_batch[Postprocessing.VALUE_TARGETS],
            policy.model.value_function()),
        "kl": policy.loss_obj.mean_kl,
        "entropy": policy.loss_obj.mean_entropy,
        "entropy_coeff": policy.entropy_coeff,
    }
Exemplo n.º 5
0
def stats(policy, train_batch):
    values_batched = make_time_major(
        policy,
        train_batch.get("seq_lens"),
        policy.model.value_function(),
        drop_last=policy.config["vtrace"])

    return {
        "cur_lr": policy.cur_lr,
        "policy_loss": policy.loss.pi_loss,
        "entropy": policy.loss.mean_entropy,
        "entropy_coeff": policy.entropy_coeff,
        "var_gnorm": global_norm(policy.model.trainable_variables()),
        "vf_loss": policy.loss.vf_loss,
        "vf_explained_var": explained_variance(
            torch.reshape(policy.loss.value_targets, [-1]),
            torch.reshape(values_batched, [-1])),
    }
Exemplo n.º 6
0
def marwil_loss(policy, model, dist_class, train_batch):
    model_out, _ = model.from_batch(train_batch)
    print("model_out.shape", model_out.shape)
    state_values = model.value_function()
    advantages = train_batch[Postprocessing.ADVANTAGES]
    actions = train_batch[SampleBatch.ACTIONS]
    print("actions", actions[0:2])
    for i in range(0, model_out.shape[0]):
        if actions[i][0] == 0:
            model_out[i][-6:] = 0
        elif actions[i][0] == 1:
            model_out[i][-4:] = 0
            model_out[i][3:7] = 0
        elif actions[i][0] == 2:
            model_out[i][3:-4] = 0
        else:
            pass
    print("model_out", model_out[0:2])
    action_dist = dist_class(model_out, model)
    print("action_dist", action_dist.input_lens)

    # Value loss.
    policy.v_loss = 0.5 * torch.mean(torch.pow(state_values - advantages, 2.0))

    # Policy loss.
    # Advantage estimation.
    adv = advantages - state_values
    # Update averaged advantage norm.
    policy.ma_adv_norm.add_(
        1e-6 * (torch.mean(torch.pow(adv, 2.0)) - policy.ma_adv_norm))
    # #xponentially weighted advantages.
    exp_advs = torch.exp(policy.config["beta"] *
                         (adv / (1e-8 + torch.pow(policy.ma_adv_norm, 0.5))))
    # log\pi_\theta(a|s)
    logprobs = action_dist.logp(actions)
    policy.p_loss = -1.0 * torch.mean(exp_advs.detach() * logprobs)

    # Combine both losses.
    policy.total_loss = policy.p_loss + policy.config["vf_coeff"] * \
        policy.v_loss
    explained_var = explained_variance(advantages, state_values)
    policy.explained_variance = torch.mean(explained_var)

    return policy.total_loss
Exemplo n.º 7
0
def stats(policy: Policy, train_batch: SampleBatch):
    """Stats function for APPO. Returns a dict with important loss stats.

    Args:
        policy (Policy): The Policy to generate stats for.
        train_batch (SampleBatch): The SampleBatch (already) used for training.

    Returns:
        Dict[str, TensorType]: The stats dict.
    """
    values_batched = make_time_major(policy,
                                     train_batch.get("seq_lens"),
                                     policy.model.value_function(),
                                     drop_last=policy.config["vtrace"])

    stats_dict = {
        "cur_lr":
        policy.cur_lr,
        "policy_loss":
        policy._mean_policy_loss,
        "entropy":
        policy._mean_entropy,
        "var_gnorm":
        global_norm(policy.model.trainable_variables()),
        "vf_loss":
        policy._mean_vf_loss,
        "vf_explained_var":
        explained_variance(torch.reshape(policy._value_targets, [-1]),
                           torch.reshape(values_batched, [-1])),
    }

    if policy.config["vtrace"]:
        is_stat_mean = torch.mean(policy._is_ratio, [0, 1])
        is_stat_var = torch.var(policy._is_ratio, [0, 1])
        stats_dict.update({"mean_IS": is_stat_mean})
        stats_dict.update({"var_IS": is_stat_var})

    if policy.config["use_kl_loss"]:
        stats_dict.update({"kl": policy._mean_kl})
        stats_dict.update({"KL_Coeff": policy.kl_coeff})

    return stats_dict
Exemplo n.º 8
0
def marwil_loss(policy: Policy, model: ModelV2, dist_class: ActionDistribution,
                train_batch: SampleBatch) -> TensorType:
    model_out, _ = model.from_batch(train_batch)
    action_dist = dist_class(model_out, model)
    actions = train_batch[SampleBatch.ACTIONS]
    # log\pi_\theta(a|s)
    logprobs = action_dist.logp(actions)

    # Advantage estimation.
    if policy.config["beta"] != 0.0:
        cumulative_rewards = train_batch[Postprocessing.ADVANTAGES]
        state_values = model.value_function()
        adv = cumulative_rewards - state_values
        adv_squared_mean = torch.mean(torch.pow(adv, 2.0))

        explained_var = explained_variance(cumulative_rewards, state_values)
        policy.explained_variance = torch.mean(explained_var)

        # Policy loss.
        # Update averaged advantage norm.
        rate = policy.config["moving_average_sqd_adv_norm_update_rate"]
        policy._moving_average_sqd_adv_norm.add_(
            rate * (adv_squared_mean - policy._moving_average_sqd_adv_norm))
        # Exponentially weighted advantages.
        exp_advs = torch.exp(
            policy.config["beta"] *
            (adv /
             (1e-8 + torch.pow(policy._moving_average_sqd_adv_norm, 0.5))))
        policy.p_loss = -torch.mean(exp_advs.detach() * logprobs)
        # Value loss.
        policy.v_loss = 0.5 * adv_squared_mean
    else:
        # Policy loss (simple BC loss term).
        policy.p_loss = -1.0 * torch.mean(logprobs)
        # Value loss.
        policy.v_loss = 0.0

    # Combine both losses.
    policy.total_loss = policy.p_loss + policy.config["vf_coeff"] * \
        policy.v_loss

    return policy.total_loss
Exemplo n.º 9
0
def ppo_surrogate_loss(
        policy: Policy, model: ModelV2,
        dist_class: Type[TorchDistributionWrapper],
        train_batch: SampleBatch) -> Union[TensorType, List[TensorType]]:
    """Constructs the loss for Proximal Policy Objective.

    Args:
        policy (Policy): The Policy to calculate the loss for.
        model (ModelV2): The Model to calculate the loss for.
        dist_class (Type[ActionDistribution]: The action distr. class.
        train_batch (SampleBatch): The training data.

    Returns:
        Union[TensorType, List[TensorType]]: A single loss tensor or a list
            of loss tensors.
    """
    logits, state = model.from_batch(train_batch, is_training=True)
    curr_action_dist = dist_class(logits, model)

    # RNN case: Mask away 0-padded chunks at end of time axis.
    if state:
        B = len(train_batch["seq_lens"])
        max_seq_len = logits.shape[0] // B
        mask = sequence_mask(train_batch["seq_lens"],
                             max_seq_len,
                             time_major=model.is_time_major())
        mask = torch.reshape(mask, [-1])
        num_valid = torch.sum(mask)

        def reduce_mean_valid(t):
            return torch.sum(t[mask]) / num_valid

    # non-RNN case: No masking.
    else:
        mask = None
        reduce_mean_valid = torch.mean

    prev_action_dist = dist_class(train_batch[SampleBatch.ACTION_DIST_INPUTS],
                                  model)

    logp_ratio = torch.exp(
        curr_action_dist.logp(train_batch[SampleBatch.ACTIONS]) -
        train_batch[SampleBatch.ACTION_LOGP])
    action_kl = prev_action_dist.kl(curr_action_dist)
    mean_kl = reduce_mean_valid(action_kl)

    curr_entropy = curr_action_dist.entropy()
    mean_entropy = reduce_mean_valid(curr_entropy)

    surrogate_loss = torch.min(
        train_batch[Postprocessing.ADVANTAGES] * logp_ratio,
        train_batch[Postprocessing.ADVANTAGES] *
        torch.clamp(logp_ratio, 1 - policy.config["clip_param"],
                    1 + policy.config["clip_param"]))
    mean_policy_loss = reduce_mean_valid(-surrogate_loss)

    if policy.config["use_gae"]:
        prev_value_fn_out = train_batch[SampleBatch.VF_PREDS]
        value_fn_out = model.value_function()
        vf_loss1 = torch.pow(
            value_fn_out - train_batch[Postprocessing.VALUE_TARGETS], 2.0)
        vf_clipped = prev_value_fn_out + torch.clamp(
            value_fn_out - prev_value_fn_out, -policy.config["vf_clip_param"],
            policy.config["vf_clip_param"])
        vf_loss2 = torch.pow(
            vf_clipped - train_batch[Postprocessing.VALUE_TARGETS], 2.0)
        vf_loss = torch.max(vf_loss1, vf_loss2)
        mean_vf_loss = reduce_mean_valid(vf_loss)
        total_loss = reduce_mean_valid(-surrogate_loss +
                                       policy.kl_coeff * action_kl +
                                       policy.config["vf_loss_coeff"] *
                                       vf_loss -
                                       policy.entropy_coeff * curr_entropy)
    else:
        mean_vf_loss = 0.0
        total_loss = reduce_mean_valid(-surrogate_loss +
                                       policy.kl_coeff * action_kl -
                                       policy.entropy_coeff * curr_entropy)

    # Store stats in policy for stats_fn.
    policy._total_loss = total_loss
    policy._mean_policy_loss = mean_policy_loss
    policy._mean_vf_loss = mean_vf_loss
    policy._vf_explained_var = explained_variance(
        train_batch[Postprocessing.VALUE_TARGETS],
        policy.model.value_function())
    policy._mean_entropy = mean_entropy
    policy._mean_kl = mean_kl

    return total_loss
Exemplo n.º 10
0
def appo_surrogate_loss(policy: Policy, model: ModelV2,
                        dist_class: Type[TorchDistributionWrapper],
                        train_batch: SampleBatch) -> TensorType:
    """Constructs the loss for APPO.

    With IS modifications and V-trace for Advantage Estimation.

    Args:
        policy (Policy): The Policy to calculate the loss for.
        model (ModelV2): The Model to calculate the loss for.
        dist_class (Type[ActionDistribution]): The action distr. class.
        train_batch (SampleBatch): The training data.

    Returns:
        Union[TensorType, List[TensorType]]: A single loss tensor or a list
            of loss tensors.
    """
    target_model = policy.target_models[model]

    model_out, _ = model.from_batch(train_batch)
    action_dist = dist_class(model_out, model)

    if isinstance(policy.action_space, gym.spaces.Discrete):
        is_multidiscrete = False
        output_hidden_shape = [policy.action_space.n]
    elif isinstance(policy.action_space,
                    gym.spaces.multi_discrete.MultiDiscrete):
        is_multidiscrete = True
        output_hidden_shape = policy.action_space.nvec.astype(np.int32)
    else:
        is_multidiscrete = False
        output_hidden_shape = 1

    def _make_time_major(*args, **kw):
        return make_time_major(policy, train_batch.get("seq_lens"), *args,
                               **kw)

    actions = train_batch[SampleBatch.ACTIONS]
    dones = train_batch[SampleBatch.DONES]
    rewards = train_batch[SampleBatch.REWARDS]
    behaviour_logits = train_batch[SampleBatch.ACTION_DIST_INPUTS]

    target_model_out, _ = target_model.from_batch(train_batch)

    prev_action_dist = dist_class(behaviour_logits, model)
    values = model.value_function()
    values_time_major = _make_time_major(values)

    if policy.is_recurrent():
        max_seq_len = torch.max(train_batch["seq_lens"])
        mask = sequence_mask(train_batch["seq_lens"], max_seq_len)
        mask = torch.reshape(mask, [-1])
        mask = _make_time_major(mask, drop_last=policy.config["vtrace"])
        num_valid = torch.sum(mask)

        def reduce_mean_valid(t):
            return torch.sum(t[mask]) / num_valid

    else:
        reduce_mean_valid = torch.mean

    if policy.config["vtrace"]:
        logger.debug("Using V-Trace surrogate loss (vtrace=True)")

        old_policy_behaviour_logits = target_model_out.detach()
        old_policy_action_dist = dist_class(old_policy_behaviour_logits, model)

        if isinstance(output_hidden_shape, (list, tuple, np.ndarray)):
            unpacked_behaviour_logits = torch.split(behaviour_logits,
                                                    list(output_hidden_shape),
                                                    dim=1)
            unpacked_old_policy_behaviour_logits = torch.split(
                old_policy_behaviour_logits, list(output_hidden_shape), dim=1)
        else:
            unpacked_behaviour_logits = torch.chunk(behaviour_logits,
                                                    output_hidden_shape,
                                                    dim=1)
            unpacked_old_policy_behaviour_logits = torch.chunk(
                old_policy_behaviour_logits, output_hidden_shape, dim=1)

        # Prepare actions for loss.
        loss_actions = actions if is_multidiscrete else torch.unsqueeze(
            actions, dim=1)

        # Prepare KL for loss.
        action_kl = _make_time_major(old_policy_action_dist.kl(action_dist),
                                     drop_last=True)

        # Compute vtrace on the CPU for better perf.
        vtrace_returns = vtrace.multi_from_logits(
            behaviour_policy_logits=_make_time_major(unpacked_behaviour_logits,
                                                     drop_last=True),
            target_policy_logits=_make_time_major(
                unpacked_old_policy_behaviour_logits, drop_last=True),
            actions=torch.unbind(_make_time_major(loss_actions,
                                                  drop_last=True),
                                 dim=2),
            discounts=(1.0 - _make_time_major(dones, drop_last=True).float()) *
            policy.config["gamma"],
            rewards=_make_time_major(rewards, drop_last=True),
            values=values_time_major[:-1],  # drop-last=True
            bootstrap_value=values_time_major[-1],
            dist_class=TorchCategorical if is_multidiscrete else dist_class,
            model=model,
            clip_rho_threshold=policy.config["vtrace_clip_rho_threshold"],
            clip_pg_rho_threshold=policy.config["vtrace_clip_pg_rho_threshold"]
        )

        actions_logp = _make_time_major(action_dist.logp(actions),
                                        drop_last=True)
        prev_actions_logp = _make_time_major(prev_action_dist.logp(actions),
                                             drop_last=True)
        old_policy_actions_logp = _make_time_major(
            old_policy_action_dist.logp(actions), drop_last=True)
        is_ratio = torch.clamp(
            torch.exp(prev_actions_logp - old_policy_actions_logp), 0.0, 2.0)
        logp_ratio = is_ratio * torch.exp(actions_logp - prev_actions_logp)
        policy._is_ratio = is_ratio

        advantages = vtrace_returns.pg_advantages.to(logp_ratio.device)
        surrogate_loss = torch.min(
            advantages * logp_ratio,
            advantages *
            torch.clamp(logp_ratio, 1 - policy.config["clip_param"],
                        1 + policy.config["clip_param"]))

        mean_kl = reduce_mean_valid(action_kl)
        mean_policy_loss = -reduce_mean_valid(surrogate_loss)

        # The value function loss.
        value_targets = vtrace_returns.vs.to(values_time_major.device)
        delta = values_time_major[:-1] - value_targets
        mean_vf_loss = 0.5 * reduce_mean_valid(torch.pow(delta, 2.0))

        # The entropy loss.
        mean_entropy = reduce_mean_valid(
            _make_time_major(action_dist.entropy(), drop_last=True))

    else:
        logger.debug("Using PPO surrogate loss (vtrace=False)")

        # Prepare KL for Loss
        action_kl = _make_time_major(prev_action_dist.kl(action_dist))

        actions_logp = _make_time_major(action_dist.logp(actions))
        prev_actions_logp = _make_time_major(prev_action_dist.logp(actions))
        logp_ratio = torch.exp(actions_logp - prev_actions_logp)

        advantages = _make_time_major(train_batch[Postprocessing.ADVANTAGES])
        surrogate_loss = torch.min(
            advantages * logp_ratio,
            advantages *
            torch.clamp(logp_ratio, 1 - policy.config["clip_param"],
                        1 + policy.config["clip_param"]))

        mean_kl = reduce_mean_valid(action_kl)
        mean_policy_loss = -reduce_mean_valid(surrogate_loss)

        # The value function loss.
        value_targets = _make_time_major(
            train_batch[Postprocessing.VALUE_TARGETS])
        delta = values_time_major - value_targets
        mean_vf_loss = 0.5 * reduce_mean_valid(torch.pow(delta, 2.0))

        # The entropy loss.
        mean_entropy = reduce_mean_valid(
            _make_time_major(action_dist.entropy()))

    # The summed weighted loss
    total_loss = mean_policy_loss + \
        mean_vf_loss * policy.config["vf_loss_coeff"] - \
        mean_entropy * policy.config["entropy_coeff"]

    # Optional additional KL Loss
    if policy.config["use_kl_loss"]:
        total_loss += policy.kl_coeff * mean_kl

    policy._total_loss = total_loss
    policy._mean_policy_loss = mean_policy_loss
    policy._mean_kl = mean_kl
    policy._mean_vf_loss = mean_vf_loss
    policy._mean_entropy = mean_entropy
    policy._value_targets = value_targets
    policy._vf_explained_var = explained_variance(
        torch.reshape(value_targets, [-1]),
        torch.reshape(
            values_time_major[:-1]
            if policy.config["vtrace"] else values_time_major, [-1]),
    )

    return total_loss
Exemplo n.º 11
0
def build_vtrace_loss(policy, model, dist_class, train_batch):
    model_out, _ = model.from_batch(train_batch)
    action_dist = dist_class(model_out, model)

    if isinstance(policy.action_space, gym.spaces.Discrete):
        is_multidiscrete = False
        output_hidden_shape = [policy.action_space.n]
    elif isinstance(policy.action_space, gym.spaces.MultiDiscrete):
        is_multidiscrete = True
        output_hidden_shape = policy.action_space.nvec.astype(np.int32)
    else:
        is_multidiscrete = False
        output_hidden_shape = 1

    def _make_time_major(*args, **kw):
        return make_time_major(policy, train_batch.get(SampleBatch.SEQ_LENS),
                               *args, **kw)

    actions = train_batch[SampleBatch.ACTIONS]
    dones = train_batch[SampleBatch.DONES]
    rewards = train_batch[SampleBatch.REWARDS]
    behaviour_action_logp = train_batch[SampleBatch.ACTION_LOGP]
    behaviour_logits = train_batch[SampleBatch.ACTION_DIST_INPUTS]
    if isinstance(output_hidden_shape, (list, tuple, np.ndarray)):
        unpacked_behaviour_logits = torch.split(behaviour_logits,
                                                list(output_hidden_shape),
                                                dim=1)
        unpacked_outputs = torch.split(model_out,
                                       list(output_hidden_shape),
                                       dim=1)
    else:
        unpacked_behaviour_logits = torch.chunk(behaviour_logits,
                                                output_hidden_shape,
                                                dim=1)
        unpacked_outputs = torch.chunk(model_out, output_hidden_shape, dim=1)
    values = model.value_function()

    if policy.is_recurrent():
        max_seq_len = torch.max(train_batch[SampleBatch.SEQ_LENS])
        mask_orig = sequence_mask(train_batch[SampleBatch.SEQ_LENS],
                                  max_seq_len)
        mask = torch.reshape(mask_orig, [-1])
    else:
        mask = torch.ones_like(rewards)

    # Prepare actions for loss.
    loss_actions = actions if is_multidiscrete else torch.unsqueeze(actions,
                                                                    dim=1)

    # Inputs are reshaped from [B * T] => [T - 1, B] for V-trace calc.
    loss = VTraceLoss(
        actions=_make_time_major(loss_actions, drop_last=True),
        actions_logp=_make_time_major(action_dist.logp(actions),
                                      drop_last=True),
        actions_entropy=_make_time_major(action_dist.entropy(),
                                         drop_last=True),
        dones=_make_time_major(dones, drop_last=True),
        behaviour_action_logp=_make_time_major(behaviour_action_logp,
                                               drop_last=True),
        behaviour_logits=_make_time_major(unpacked_behaviour_logits,
                                          drop_last=True),
        target_logits=_make_time_major(unpacked_outputs, drop_last=True),
        discount=policy.config["gamma"],
        rewards=_make_time_major(rewards, drop_last=True),
        values=_make_time_major(values, drop_last=True),
        bootstrap_value=_make_time_major(values)[-1],
        dist_class=TorchCategorical if is_multidiscrete else dist_class,
        model=model,
        valid_mask=_make_time_major(mask, drop_last=True),
        config=policy.config,
        vf_loss_coeff=policy.config["vf_loss_coeff"],
        entropy_coeff=policy.entropy_coeff,
        clip_rho_threshold=policy.config["vtrace_clip_rho_threshold"],
        clip_pg_rho_threshold=policy.config["vtrace_clip_pg_rho_threshold"])

    # Store values for stats function in model (tower), such that for
    # multi-GPU, we do not override them during the parallel loss phase.
    model.tower_stats["pi_loss"] = loss.pi_loss
    model.tower_stats["vf_loss"] = loss.vf_loss
    model.tower_stats["entropy"] = loss.entropy
    model.tower_stats["mean_entropy"] = loss.mean_entropy
    model.tower_stats["total_loss"] = loss.total_loss

    values_batched = make_time_major(policy,
                                     train_batch.get(SampleBatch.SEQ_LENS),
                                     values,
                                     drop_last=policy.config["vtrace"])
    model.tower_stats["vf_explained_var"] = explained_variance(
        torch.reshape(loss.value_targets, [-1]),
        torch.reshape(values_batched, [-1]))

    return loss.total_loss