Exemplo n.º 1
0
Arquivo: api.py Projeto: euhanna/ray
def init(name=None,
         http_host=DEFAULT_HTTP_HOST,
         http_port=DEFAULT_HTTP_PORT,
         metric_exporter=InMemoryExporter,
         _http_middlewares=[]):
    """Initialize or connect to a serve cluster.

    If serve cluster is already initialized, this function will just return.

    If `ray.init` has not been called in this process, it will be called with
    no arguments. To specify kwargs to `ray.init`, it should be called
    separately before calling `serve.init`.

    Args:
        name (str): A unique name for this serve instance. This allows
            multiple serve instances to run on the same ray cluster. Must be
            specified in all subsequent serve.init() calls.
        http_host (str): Host for HTTP servers. Default to "0.0.0.0". Serve
            starts one HTTP server per node in the Ray cluster.
        http_port (int, List[int]): Port for HTTP server. Default to 8000.
        metric_exporter(ExporterInterface): The class aggregates metrics from
            all RayServe actors and optionally export them to external
            services. Ray Serve has two options built in: InMemoryExporter and
            PrometheusExporter
    """
    if name is not None and not isinstance(name, str):
        raise TypeError("name must be a string.")

    # Initialize ray if needed.
    if not ray.is_initialized():
        ray.init()

    # Try to get serve controller if it exists
    global controller
    controller_name = format_actor_name(SERVE_CONTROLLER_NAME, name)
    try:
        controller = ray.get_actor(controller_name)
        return
    except ValueError:
        pass

    controller = ServeController.options(
        name=controller_name,
        max_restarts=-1,
        max_task_retries=-1,
    ).remote(name, http_host, http_port, metric_exporter, _http_middlewares)

    futures = []
    for node_id in ray.state.node_ids():
        future = block_until_http_ready.options(
            num_cpus=0, resources={
                node_id: 0.01
            }).remote(
                "http://{}:{}/-/routes".format(http_host, http_port),
                timeout=HTTP_PROXY_TIMEOUT)
        futures.append(future)
    ray.get(futures)
Exemplo n.º 2
0
Arquivo: api.py Projeto: witsang/ray
def init(name=None,
         http_host=DEFAULT_HTTP_HOST,
         http_port=DEFAULT_HTTP_PORT,
         metric_exporter=InMemoryExporter):
    """Initialize or connect to a serve cluster.

    If serve cluster is already initialized, this function will just return.

    If `ray.init` has not been called in this process, it will be called with
    no arguments. To specify kwargs to `ray.init`, it should be called
    separately before calling `serve.init`.

    Args:
        name (str): A unique name for this serve instance. This allows
            multiple serve instances to run on the same ray cluster. Must be
            specified in all subsequent serve.init() calls.
        http_host (str): Host for HTTP server. Default to "0.0.0.0".
        http_port (int): Port for HTTP server. Default to 8000.
        metric_exporter(ExporterInterface): The class aggregates metrics from
            all RayServe actors and optionally export them to external
            services. RayServe has two options built in: InMemoryExporter and
            PrometheusExporter
    """
    if name is not None and not isinstance(name, str):
        raise TypeError("name must be a string.")

    # Initialize ray if needed.
    if not ray.is_initialized():
        ray.init()

    # Try to get serve controller if it exists
    global controller
    controller_name = format_actor_name(SERVE_CONTROLLER_NAME, name)
    try:
        controller = ray.get_actor(controller_name)
        return
    except ValueError:
        pass

    # TODO(edoakes): for now, always start the HTTP proxy on the node that
    # serve.init() was run on. We should consider making this configurable
    # in the future.
    http_node_id = ray.state.current_node_id()
    controller = ServeController.options(
        name=controller_name,
        max_restarts=-1,
        max_task_retries=-1,
    ).remote(name, http_node_id, http_host, http_port, metric_exporter)

    block_until_http_ready("http://{}:{}/-/routes".format(
        http_host, http_port),
                           timeout=HTTP_PROXY_TIMEOUT)
Exemplo n.º 3
0
def start(
    detached: bool = False,
    http_options: Optional[Union[dict, HTTPOptions]] = None,
    dedicated_cpu: bool = False,
    _checkpoint_path: str = DEFAULT_CHECKPOINT_PATH,
    **kwargs,
) -> ServeControllerClient:
    """Initialize a serve instance.

    By default, the instance will be scoped to the lifetime of the returned
    Client object (or when the script exits). If detached is set to True, the
    instance will instead persist until serve.shutdown() is called. This is
    only relevant if connecting to a long-running Ray cluster (e.g., with
    ray.init(address="auto") or ray.init("ray://<remote_addr>")).

    Args:
        detached: Whether not the instance should be detached from this
          script. If set, the instance will live on the Ray cluster until it is
          explicitly stopped with serve.shutdown().
        http_options (Optional[Dict, serve.HTTPOptions]): Configuration options
          for HTTP proxy. You can pass in a dictionary or HTTPOptions object
          with fields:

            - host(str, None): Host for HTTP servers to listen on. Defaults to
              "127.0.0.1". To expose Serve publicly, you probably want to set
              this to "0.0.0.0".
            - port(int): Port for HTTP server. Defaults to 8000.
            - root_path(str): Root path to mount the serve application
              (for example, "/serve"). All deployment routes will be prefixed
              with this path. Defaults to "".
            - middlewares(list): A list of Starlette middlewares that will be
              applied to the HTTP servers in the cluster. Defaults to [].
            - location(str, serve.config.DeploymentMode): The deployment
              location of HTTP servers:

                - "HeadOnly": start one HTTP server on the head node. Serve
                  assumes the head node is the node you executed serve.start
                  on. This is the default.
                - "EveryNode": start one HTTP server per node.
                - "NoServer" or None: disable HTTP server.
            - num_cpus (int): The number of CPU cores to reserve for each
              internal Serve HTTP proxy actor.  Defaults to 0.
        dedicated_cpu: Whether to reserve a CPU core for the internal
          Serve controller actor.  Defaults to False.
    """
    usage_lib.record_library_usage("serve")

    http_deprecated_args = ["http_host", "http_port", "http_middlewares"]
    for key in http_deprecated_args:
        if key in kwargs:
            raise ValueError(
                f"{key} is deprecated, please use serve.start(http_options="
                f'{{"{key}": {kwargs[key]}}}) instead.')
    # Initialize ray if needed.
    ray._private.worker.global_worker.filter_logs_by_job = False
    if not ray.is_initialized():
        ray.init(namespace=SERVE_NAMESPACE)

    try:
        client = get_global_client(_health_check_controller=True)
        logger.info(
            f'Connecting to existing Serve app in namespace "{SERVE_NAMESPACE}".'
        )

        _check_http_and_checkpoint_options(client, http_options,
                                           _checkpoint_path)
        return client
    except RayServeException:
        pass

    if detached:
        controller_name = SERVE_CONTROLLER_NAME
    else:
        controller_name = format_actor_name(get_random_letters(),
                                            SERVE_CONTROLLER_NAME)

    if isinstance(http_options, dict):
        http_options = HTTPOptions.parse_obj(http_options)
    if http_options is None:
        http_options = HTTPOptions()

    controller = ServeController.options(
        num_cpus=1 if dedicated_cpu else 0,
        name=controller_name,
        lifetime="detached" if detached else None,
        max_restarts=-1,
        max_task_retries=-1,
        # Pin Serve controller on the head node.
        resources={
            get_current_node_resource_key(): 0.01
        },
        namespace=SERVE_NAMESPACE,
        max_concurrency=CONTROLLER_MAX_CONCURRENCY,
    ).remote(
        controller_name,
        http_options,
        _checkpoint_path,
        detached=detached,
    )

    proxy_handles = ray.get(controller.get_http_proxies.remote())
    if len(proxy_handles) > 0:
        try:
            ray.get(
                [handle.ready.remote() for handle in proxy_handles.values()],
                timeout=HTTP_PROXY_TIMEOUT,
            )
        except ray.exceptions.GetTimeoutError:
            raise TimeoutError(
                f"HTTP proxies not available after {HTTP_PROXY_TIMEOUT}s.")

    client = ServeControllerClient(
        controller,
        controller_name,
        detached=detached,
    )
    set_global_client(client)
    logger.info(f"Started{' detached ' if detached else ' '}Serve instance in "
                f'namespace "{SERVE_NAMESPACE}".')
    return client
Exemplo n.º 4
0
Arquivo: api.py Projeto: yukingx/ray
def start(detached: bool = False,
          http_host: str = DEFAULT_HTTP_HOST,
          http_port: int = DEFAULT_HTTP_PORT,
          http_middlewares: List[Any] = []) -> Client:
    """Initialize a serve instance.

    By default, the instance will be scoped to the lifetime of the returned
    Client object (or when the script exits). If detached is set to True, the
    instance will instead persist until client.shutdown() is called and clients
    to it can be connected using serve.connect(). This is only relevant if
    connecting to a long-running Ray cluster (e.g., with address="auto").

    Args:
        detached (bool): Whether not the instance should be detached from this
            script.
        http_host (str): Host for HTTP servers to listen on. Defaults to
            "127.0.0.1". To expose Serve publicly, you probably want to set
            this to "0.0.0.0". One HTTP server will be started on each node in
            the Ray cluster.
        http_port (int): Port for HTTP server. Defaults to 8000.
        http_middlewares (list): A list of Starlette middlewares that will be
            applied to the HTTP servers in the cluster.
    """
    # Initialize ray if needed.
    if not ray.is_initialized():
        ray.init()

    # Try to get serve controller if it exists
    if detached:
        controller_name = SERVE_CONTROLLER_NAME
        try:
            ray.get_actor(controller_name)
            raise RayServeException("Called serve.start(detached=True) but a "
                                    "detached instance is already running. "
                                    "Please use serve.connect() to connect to "
                                    "the running instance instead.")
        except ValueError:
            pass
    else:
        controller_name = format_actor_name(SERVE_CONTROLLER_NAME,
                                            get_random_letters())

    controller = ServeController.options(
        name=controller_name,
        lifetime="detached" if detached else None,
        max_restarts=-1,
        max_task_retries=-1,
    ).remote(controller_name,
             http_host,
             http_port,
             http_middlewares,
             detached=detached)

    futures = []
    for node_id in ray.state.node_ids():
        future = block_until_http_ready.options(
            num_cpus=0, resources={
                node_id: 0.01
            }).remote("http://{}:{}/-/routes".format(http_host, http_port),
                      timeout=HTTP_PROXY_TIMEOUT)
        futures.append(future)
    ray.get(futures)

    return Client(controller, controller_name, detached=detached)
Exemplo n.º 5
0
def start(
        detached: bool = False,
        http_host: Optional[str] = DEFAULT_HTTP_HOST,
        http_port: int = DEFAULT_HTTP_PORT,
        http_middlewares: List[Any] = [],
        http_options: Optional[Union[dict, HTTPOptions]] = None,
) -> Client:
    """Initialize a serve instance.

    By default, the instance will be scoped to the lifetime of the returned
    Client object (or when the script exits). If detached is set to True, the
    instance will instead persist until client.shutdown() is called and clients
    to it can be connected using serve.connect(). This is only relevant if
    connecting to a long-running Ray cluster (e.g., with address="auto").

    Args:
        detached (bool): Whether not the instance should be detached from this
          script.
        http_host (Optional[str]): Deprecated, use http_options instead.
        http_port (int): Deprecated, use http_options instead.
        http_middlewares (list): Deprecated, use http_options instead.
        http_options (Optional[Dict, serve.HTTPOptions]): Configuration options
          for HTTP proxy. You can pass in a dictionary or HTTPOptions object
          with fields:

            - host(str, None): Host for HTTP servers to listen on. Defaults to
              "127.0.0.1". To expose Serve publicly, you probably want to set
              this to "0.0.0.0".
            - port(int): Port for HTTP server. Defaults to 8000.
            - middlewares(list): A list of Starlette middlewares that will be
              applied to the HTTP servers in the cluster.
            - location(str, serve.config.DeploymentMode): The deployment
              location of HTTP servers:

                - "HeadOnly": start one HTTP server on the head node. Serve
                  assumes the head node is the node you executed serve.start
                  on. This is the default.
                - "EveryNode": start one HTTP server per node.
                - "NoServer" or None: disable HTTP server.
    """
    if ((http_host != DEFAULT_HTTP_HOST) or (http_port != DEFAULT_HTTP_PORT)
            or (len(http_middlewares) != 0)):
        if http_options is not None:
            raise ValueError(
                "You cannot specify both `http_options` and any of the "
                "`http_host`, `http_port`, and `http_middlewares` arguments. "
                "`http_options` is preferred.")
        else:
            warn(
                "`http_host`, `http_port`, `http_middlewares` are deprecated. "
                "Please use serve.start(http_options={'host': ..., "
                "'port': ..., middlewares': ...}) instead.",
                DeprecationWarning,
            )

    # Initialize ray if needed.
    if not ray.is_initialized():
        ray.init()

    register_custom_serializers()

    # Try to get serve controller if it exists
    if detached:
        controller_name = SERVE_CONTROLLER_NAME
        try:
            ray.get_actor(controller_name)
            raise RayServeException("Called serve.start(detached=True) but a "
                                    "detached instance is already running. "
                                    "Please use serve.connect() to connect to "
                                    "the running instance instead.")
        except ValueError:
            pass
    else:
        controller_name = format_actor_name(SERVE_CONTROLLER_NAME,
                                            get_random_letters())

    if isinstance(http_options, dict):
        http_options = HTTPOptions.parse_obj(http_options)
    if http_options is None:
        http_options = HTTPOptions(
            host=http_host, port=http_port, middlewares=http_middlewares)

    controller = ServeController.options(
        name=controller_name,
        lifetime="detached" if detached else None,
        max_restarts=-1,
        max_task_retries=-1,
        # Pin Serve controller on the head node.
        resources={
            get_current_node_resource_key(): 0.01
        },
    ).remote(
        controller_name,
        http_options,
        detached=detached,
    )

    proxy_handles = ray.get(controller.get_http_proxies.remote())
    if len(proxy_handles) > 0:
        try:
            ray.get(
                [handle.ready.remote() for handle in proxy_handles.values()],
                timeout=HTTP_PROXY_TIMEOUT,
            )
        except ray.exceptions.GetTimeoutError:
            raise TimeoutError(
                "HTTP proxies not available after {HTTP_PROXY_TIMEOUT}s.")

    client = Client(controller, controller_name, detached=detached)
    _set_global_client(client)
    return client