Exemplo n.º 1
0
 def check_output(self, place):
     paddle.disable_static()
     pd_rbox1 = paddle.to_tensor(self.rbox1, place=place)
     pd_rbox2 = paddle.to_tensor(self.rbox2, place=place)
     actual_t = rbox_iou(pd_rbox1, pd_rbox2).numpy()
     poly_rbox1 = self.rbox1
     poly_rbox2 = self.rbox2
     poly_rbox1[:, 0:4] = self.rbox1[:, 0:4] * 1024
     poly_rbox2[:, 0:4] = self.rbox2[:, 0:4] * 1024
     expect_t = rbox_overlaps(poly_rbox1, poly_rbox2, use_cv2=False)
     self.assertAllClose(
         actual_t,
         expect_t,
         msg="rbox_iou has diff at {} \nExpect {}\nBut got {}".format(
             str(place), str(expect_t), str(actual_t)))
Exemplo n.º 2
0
def calc_rbox_iou(pred, gt_rbox):
    """
    calc iou between rotated bbox
    """
    # calc iou of bounding box for speedup
    pred = np.array(pred, np.float32).reshape(-1, 8)
    pred = pred.reshape(-1, 2)
    gt_poly = rbox2poly_np(np.array(gt_rbox).reshape(-1, 5))[0]
    gt_poly = gt_poly.reshape(-1, 2)
    pred_rect = [
        np.min(pred[:, 0]),
        np.min(pred[:, 1]),
        np.max(pred[:, 0]),
        np.max(pred[:, 1])
    ]
    gt_rect = [
        np.min(gt_poly[:, 0]),
        np.min(gt_poly[:, 1]),
        np.max(gt_poly[:, 0]),
        np.max(gt_poly[:, 1])
    ]
    iou = jaccard_overlap(pred_rect, gt_rect, False)

    if iou <= 0:
        return iou

    # calc rbox iou
    pred = pred.reshape(-1, 8)

    pred = np.array(pred, np.float32).reshape(-1, 8)
    pred_rbox = poly2rbox(pred)
    pred_rbox = pred_rbox.reshape(-1, 5)
    pred_rbox = pred_rbox.reshape(-1, 5)
    try:
        from rbox_iou_ops import rbox_iou
    except Exception as e:
        print("import custom_ops error, try install rbox_iou_ops " \
                  "following ppdet/ext_op/README.md", e)
        sys.stdout.flush()
        sys.exit(-1)
    gt_rbox = np.array(gt_rbox, np.float32).reshape(-1, 5)
    pd_gt_rbox = paddle.to_tensor(gt_rbox, dtype='float32')
    pd_pred_rbox = paddle.to_tensor(pred_rbox, dtype='float32')
    iou = rbox_iou(pd_gt_rbox, pd_pred_rbox)
    iou = iou.numpy()
    return iou[0][0]
Exemplo n.º 3
0
    def assign_anchor(self,
                      anchors,
                      gt_bboxes,
                      gt_lables,
                      pos_iou_thr,
                      neg_iou_thr,
                      min_iou_thr=0.0,
                      ignore_iof_thr=-2):
        """

        Args:
            anchors:
            gt_bboxes:[M, 5] rc,yc,w,h,angle
            gt_lables:

        Returns:

        """
        assert anchors.shape[1] == 4 or anchors.shape[1] == 5
        assert gt_bboxes.shape[1] == 4 or gt_bboxes.shape[1] == 5
        anchors_xc_yc = anchors
        gt_bboxes_xc_yc = gt_bboxes

        # calc rbox iou
        anchors_xc_yc = anchors_xc_yc.astype(np.float32)
        gt_bboxes_xc_yc = gt_bboxes_xc_yc.astype(np.float32)
        anchors_xc_yc = paddle.to_tensor(anchors_xc_yc)
        gt_bboxes_xc_yc = paddle.to_tensor(gt_bboxes_xc_yc)

        try:
            from rbox_iou_ops import rbox_iou
        except Exception as e:
            print("import custom_ops error, try install rbox_iou_ops " \
                  "following ppdet/ext_op/README.md", e)
            sys.stdout.flush()
            sys.exit(-1)

        iou = rbox_iou(gt_bboxes_xc_yc, anchors_xc_yc)
        iou = iou.numpy()
        iou = iou.T

        # every gt's anchor's index
        gt_bbox_anchor_inds = iou.argmax(axis=0)
        gt_bbox_anchor_iou = iou[gt_bbox_anchor_inds, np.arange(iou.shape[1])]
        gt_bbox_anchor_iou_inds = np.where(iou == gt_bbox_anchor_iou)[0]

        # every anchor's gt bbox's index
        anchor_gt_bbox_inds = iou.argmax(axis=1)
        anchor_gt_bbox_iou = iou[np.arange(iou.shape[0]), anchor_gt_bbox_inds]

        # (1) set labels=-2 as default
        labels = np.ones((iou.shape[0], ), dtype=np.int32) * ignore_iof_thr

        # (2) assign ignore
        labels[anchor_gt_bbox_iou < min_iou_thr] = ignore_iof_thr

        # (3) assign neg_ids -1
        assign_neg_ids1 = anchor_gt_bbox_iou >= min_iou_thr
        assign_neg_ids2 = anchor_gt_bbox_iou < neg_iou_thr
        assign_neg_ids = np.logical_and(assign_neg_ids1, assign_neg_ids2)
        labels[assign_neg_ids] = -1

        # anchor_gt_bbox_iou_inds
        # (4) assign max_iou as pos_ids >=0
        anchor_gt_bbox_iou_inds = anchor_gt_bbox_inds[gt_bbox_anchor_iou_inds]
        # gt_bbox_anchor_iou_inds = np.logical_and(gt_bbox_anchor_iou_inds, anchor_gt_bbox_iou >= min_iou_thr)
        labels[gt_bbox_anchor_iou_inds] = gt_lables[anchor_gt_bbox_iou_inds]

        # (5) assign >= pos_iou_thr as pos_ids
        iou_pos_iou_thr_ids = anchor_gt_bbox_iou >= pos_iou_thr
        iou_pos_iou_thr_ids_box_inds = anchor_gt_bbox_inds[iou_pos_iou_thr_ids]
        labels[iou_pos_iou_thr_ids] = gt_lables[iou_pos_iou_thr_ids_box_inds]
        return anchor_gt_bbox_inds, anchor_gt_bbox_iou, labels
Exemplo n.º 4
0
    def get_odm_loss(self, odm_target, s2anet_head_out, reg_loss_type='gwd'):
        (labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes,
         pos_inds, neg_inds) = odm_target
        fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out

        odm_cls_losses = []
        odm_bbox_losses = []
        st_idx = 0
        num_total_samples = len(pos_inds) + len(
            neg_inds) if self.sampling else len(pos_inds)
        num_total_samples = max(1, num_total_samples)

        for idx, feat_size in enumerate(self.featmap_sizes_list):
            feat_anchor_num = feat_size[0] * feat_size[1]

            # step1:  get data
            feat_labels = labels[st_idx:st_idx + feat_anchor_num]
            feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]

            feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
            feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]

            # step2: calc cls loss
            feat_labels = feat_labels.reshape(-1)
            feat_label_weights = feat_label_weights.reshape(-1)

            odm_cls_score = odm_cls_branch_list[idx]
            odm_cls_score = paddle.squeeze(odm_cls_score, axis=0)
            odm_cls_score1 = odm_cls_score

            feat_labels = paddle.to_tensor(feat_labels)
            feat_labels_one_hot = paddle.nn.functional.one_hot(
                feat_labels, self.cls_out_channels + 1)
            feat_labels_one_hot = feat_labels_one_hot[:, 1:]
            feat_labels_one_hot.stop_gradient = True

            num_total_samples = paddle.to_tensor(
                num_total_samples, dtype='float32', stop_gradient=True)
            odm_cls = F.sigmoid_focal_loss(
                odm_cls_score1,
                feat_labels_one_hot,
                normalizer=num_total_samples,
                reduction='none')

            feat_label_weights = feat_label_weights.reshape(
                feat_label_weights.shape[0], 1)
            feat_label_weights = np.repeat(
                feat_label_weights, self.cls_out_channels, axis=1)
            feat_label_weights = paddle.to_tensor(feat_label_weights)
            feat_label_weights.stop_gradient = True

            odm_cls = odm_cls * feat_label_weights
            odm_cls_total = paddle.sum(odm_cls)
            odm_cls_losses.append(odm_cls_total)

            # # step3: regression loss
            feat_bbox_targets = paddle.to_tensor(
                feat_bbox_targets, dtype='float32')
            feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
            feat_bbox_targets.stop_gradient = True

            odm_bbox_pred = odm_reg_branch_list[idx]
            odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0)
            odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
            odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)

            loss_weight = paddle.to_tensor(
                self.reg_loss_weight, dtype='float32', stop_gradient=True)
            odm_bbox = paddle.multiply(odm_bbox, loss_weight)
            feat_bbox_weights = paddle.to_tensor(
                feat_bbox_weights, stop_gradient=True)

            if reg_loss_type == 'l1':
                odm_bbox = odm_bbox * feat_bbox_weights
                odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples
            elif reg_loss_type == 'iou' or reg_loss_type == 'gwd':
                odm_bbox = paddle.sum(odm_bbox, axis=-1)
                feat_bbox_weights = paddle.sum(feat_bbox_weights, axis=-1)
                try:
                    from rbox_iou_ops import rbox_iou
                except Exception as e:
                    print("import custom_ops error, try install rbox_iou_ops " \
                          "following ppdet/ext_op/README.md", e)
                    sys.stdout.flush()
                    sys.exit(-1)
                # calc iou
                odm_bbox_decode = self.delta2rbox(self.refine_anchor_list[idx],
                                                  odm_bbox_pred)
                bbox_gt_bboxes = paddle.to_tensor(
                    bbox_gt_bboxes,
                    dtype=odm_bbox_decode.dtype,
                    place=odm_bbox_decode.place)
                bbox_gt_bboxes.stop_gradient = True
                iou = rbox_iou(odm_bbox_decode, bbox_gt_bboxes)
                iou = paddle.diag(iou)

                if reg_loss_type == 'gwd':
                    bbox_gt_bboxes_level = bbox_gt_bboxes[st_idx:st_idx +
                                                          feat_anchor_num, :]
                    odm_bbox_total = self.gwd_loss(odm_bbox_decode,
                                                   bbox_gt_bboxes_level)
                    odm_bbox_total = odm_bbox_total * feat_bbox_weights
                    odm_bbox_total = paddle.sum(odm_bbox_total) / num_total_samples

            odm_bbox_losses.append(odm_bbox_total)
            st_idx += feat_anchor_num

        odm_cls_loss = paddle.add_n(odm_cls_losses)
        odm_cls_loss_weight = paddle.to_tensor(
            self.cls_loss_weight[1], dtype='float32', stop_gradient=True)
        odm_cls_loss = odm_cls_loss * odm_cls_loss_weight
        odm_reg_loss = paddle.add_n(odm_bbox_losses)
        return odm_cls_loss, odm_reg_loss
Exemplo n.º 5
0
# x1 y1 w h [0, 0.5]
rbox1[:, 0:4] = rbox1[:, 0:4] * 0.45 + 0.001
rbox2[:, 0:4] = rbox2[:, 0:4] * 0.45 + 0.001

# generate rbox
rbox1[:, 4] = rbox1[:, 4] - 0.5
rbox2[:, 4] = rbox2[:, 4] - 0.5

print('rbox1', rbox1.shape, 'rbox2', rbox2.shape)

# to paddle tensor
pd_rbox1 = paddle.to_tensor(rbox1)
pd_rbox2 = paddle.to_tensor(rbox2)

iou = rbox_iou(pd_rbox1, pd_rbox2)
start_time = time.time()
print('paddle time:', time.time() - start_time)
print('iou is', iou.cpu().shape)


# get gt
def rbox2poly_single(rrect, get_best_begin_point=False):
    """
    rrect:[x_ctr,y_ctr,w,h,angle]
    to
    poly:[x0,y0,x1,y1,x2,y2,x3,y3]
    """
    x_ctr, y_ctr, width, height, angle = rrect[:5]
    tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
    # rect 2x4