def setup(self): data=read.load(self.offsets[0],file=self.filename,type=self.type) if self.xrange==None: self.xrange=[data.getBounds()[0],data.getBounds()[1]] if self.yrange==None: self.yrange=[data.getBounds()[2],data.getBounds()[3]]
def setup(self): data = read.load(self.offsets[0], file=self.filename, type=self.type) if self.xrange == None: self.xrange = [data.getBounds()[0], data.getBounds()[1]] if self.yrange == None: self.yrange = [data.getBounds()[2], data.getBounds()[3]]
def readData(self): if self.type != 'vti': if self.xrange[0] <=0. : self.data=read.load(self.offset,file=self.filenameout,type=self.type,mirrorPlane=0) else: self.data=read.load(self.offset,file=self.filenameout,type=self.type) else: self.data=read.loadvti(self.offset,file=self.filenameout) self.nx=self.data.nx self.ny=self.data.nx if self.xrange == None: self.xrange = np.array(self.data.getBounds()[0:2]) if self.yrange == None: self.yrange = np.array(self.data.getBounds()[2:4]) self.Lx = self.xrange[1] - self.xrange[0] self.Ly = self.yrange[1] - self.yrange[0]
def readData(self): if self.type != 'vti': if self.xrange[0] <= 0.: self.data = read.load(self.offset, file=self.filenameout, type=self.type, mirrorPlane=0) else: self.data = read.load(self.offset, file=self.filenameout, type=self.type) else: self.data = read.loadvti(self.offset, file=self.filenameout) self.nx = self.data.nx self.ny = self.data.nx if self.xrange == None: self.xrange = np.array(self.data.getBounds()[0:2]) if self.yrange == None: self.yrange = np.array(self.data.getBounds()[2:4]) self.Lx = self.xrange[1] - self.xrange[0] self.Ly = self.yrange[1] - self.yrange[0]
def run(self): self.setup() offsets=np.arange(self.offsets[1]+1-self.offsets[0])+self.offsets[0] for offset in offsets: fo=''.join([self.filenameout,str(offset).zfill(4),'.png']) data=read.load(offset,file=self.filename,type=self.type) # exec ''.join(['var=',self.function]) var = self.function(data) self.polyplot = polyplot(var,data=data, nlevels=self.nlevels,grid=self.grid,cmap=self.cmap, orientation=self.orientation, xrange=self.xrange,yrange=self.yrange, min=self.min,max=self.max, filenameout=fo ) self.polyplot.save(fo) plt.close()
def run(self): self.setup() offsets = np.arange(self.offsets[1] + 1 - self.offsets[0]) + self.offsets[0] for offset in offsets: fo = ''.join([self.filenameout, str(offset).zfill(4), '.png']) data = read.load(offset, file=self.filename, type=self.type) # exec ''.join(['var=',self.function]) var = self.function(data) self.polyplot = polyplot(var, data=data, nlevels=self.nlevels, grid=self.grid, cmap=self.cmap, orientation=self.orientation, xrange=self.xrange, yrange=self.yrange, min=self.min, max=self.max, filenameout=fo) self.polyplot.save(fo) plt.close()
def getFromOffset(offset, filenameout='data', type='pvtu'): data = read.load(offset, file=filenameout, type=type) myradii = get(data) myradii['offset'] = offset return myradii
def getFromOffset(offset,filenameout='data',type='pvtu'): data = read.load(offset,file=filenameout,type=type) myradii=get(data) myradii['offset'] = offset return myradii
def output(): file = os.listdir(data_dir) filesp = file[0].split('.') imgwritpath = write_dir + file[0] writepath = write_dir + filesp[0] + '.xml' collection['file'] = file[0] read_path = data_dir + file[0] ## png图片 # img = cv.imread(read_path) # ### 原图 img = read.load(read_path) img = cv.flip(img, 0, dst=None) ## 1 归一化到0,255的数据 # image= img/255 ## 2 截取到-0.75,0.75区间的数据/3 img = np.expand_dims(img, -1) imgShape = np.shape(img) collection['shape'] = imgShape inputTest = np.expand_dims(img, 0) x = tf.placeholder(tf.float32, shape=[1, imgShape[0], imgShape[1], channel]) y = U_net.inference(x, is_training=False) variables_to_restore = [] for v in tf.global_variables(): variables_to_restore.append(v) saver = tf.train.Saver(variables_to_restore, write_version=tf.train.SaverDef.V2, max_to_keep=None) tf.global_variables_initializer().run() saver.restore(sess, savepath) output = sess.run(y, feed_dict={x: inputTest}) out = np.squeeze(output).astype(np.uint8) ## 1 归一化到0,255的数据 # out = out*255 ## 2 截取到-0.75,0.75区间的数据 # img = ((np.squeeze(img) + 0.75) / 1.5 * 255).astype(np.uint8) # out = out * 255 ## 3 映射到0,1的数据 img = ((np.squeeze(inputTest)) * 255).astype(np.uint8) out = np.squeeze(output).astype(np.uint8) out = out * 255 kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5)) # 定义结构元素 outclosing = cv.morphologyEx(out, cv.MORPH_CLOSE, kernel) # 闭运算 postproce.contourmask(img, outclosing, collection) wrx.writeInfoToXml(writepath, collection) # cv.imwrite(imgwritpath,img) cv.namedWindow('imgrec', 0) cv.resizeWindow('imgrec', 500, 500) cv.imshow('imgrec', img) cv.namedWindow('output', 0) cv.resizeWindow('output', 500, 500) cv.imshow('output', outclosing) cv.waitKey(0) cv.destroyAllWindows()