def __init__(self, args): #Load Data data = datasets.getData() self.data = data #Load LM lm_model = main_lm.RNNLanguageModelHandler(args) self.lm_model = lm_model
def __init_(self): for i in range(10): trainInputs,trainOutputs,validInputs,validOutputs,testInputs,testOutputs,wids=getData(crossValidate=True,filterKnight=True,foldId=i) print len(trainInputs) print len(validInputs) print len(testInputs) self.sequences = readData.getData(crossValidate=True,filterKnight=False,foldId=i)
def main(args): # Load training and eval data xTrain, yTrain, xVal, yVal = getData() # random.shuffle(data) # xTrain = [d['timeSample'] for d in data[:2200]] # yTrain = [d[] for d in data[:2200]] # Create the Estimator classifier = tf.estimator.Estimator(model_fn=cnn_model_fn, model_dir="ABCDEFG") # Set up logging for predictions tensors_to_log = {"probabilities": "softmax_tensor"} logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=50) # Train the model train_input_fn = tf.estimator.inputs.numpy_input_fn(x={"x": xTrain}, y=yTrain, batch_size=100, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=10, hooks=[logging_hook]) # Evaluate the model and print results eval_input_fn = tf.estimator.inputs.numpy_input_fn(x={"x": xVal}, y=yVal, num_epochs=10, shuffle=False) eval_results = classifier.evaluate(input_fn=eval_input_fn) print(eval_results)
def __handle_message_activity(self, activity): self.send_response(200) self.end_headers() credentials = MicrosoftAppCredentials(APP_ID, APP_PASSWORD) connector = ConnectorClient(credentials, base_url=activity.service_url) reply = BotRequestHandler.__create_reply_activity( activity, 'You said: %s' % getData()) connector.conversations.send_to_conversation(reply.conversation.id, reply)
import dataProcessing ''' ###################################### ''' ''' ## COMPUTE SAMPLE BANK DATA ## ''' ''' ###################################### ''' start = time.clock() freq_dict = dict() # Struct: dict[category] -> dict[category][word]:freq posSize_dict = dict() # Struct: dict -> 1Dlist -> 1Dlist tfidf_dict = dict() # Struct: dict[category] -> dict[word]:tfidf_weighting wordMapDict = dict() # Struct: dict[category] -> dict[category][fileName] -> dict[[category][fileName][word]:1 numOfFile = 0 freq_dict, posSize_dict = readData.getData() # freq_dict = processWords.filterTrashWords(freq_dict) # freq_dict_th = processWords.applyMeanThreshold(freq_dict) mid = time.clock() print(mid - start) wordMapDict, numOfFile = readData.getTrainingDataWordMap() tfidf_dict = processWords.computeTFIDF(freq_dict, wordMapDict, numOfFile) ########################################################################
def predict(self, sample): result = {} maxcout = 0 retlabel = None for tree in self.trees: label = tree.predict(sample) if label in result.keys(): result[label] += 1 else: result[label] = 1 if result[label] > maxcout: maxcout = result[label] retlabel = label return retlabel if __name__ == "__main__": rf = RandomForest(n_tree=201) from readData import getData data, labels = getData() rf.train(data) correct = 0 total = len(data) for i in range(len(data)): label = rf.predict(data[i][:-1]) if data[i][-1] == label: correct += 1 print(correct, total, correct / total)
import readData for f in range(10): trainInputs, trainOutputs, validInputs, validOutputs, testInputs, testOutputs, wids = readData.getData( filterKnight=True, crossValidate=True, foldId=f) print len(trainInputs) print len(validInputs) print len(testInputs) print "Vocab Size:", len(wids) print "First Input:", trainInputs[0] print "First Output:", trainOutputs[0] reverse_wids = readData.reverseDictionary(wids) print "First Input Raw", [reverse_wids[c] for c in trainInputs[0]] print "First Output Raw", [reverse_wids[c] for c in trainOutputs[0]]
# ************************************************************ # EXTRACTION OF ECG SIGNALS FROM DATABASES # ************************************************************ print 'Extracting ECG signals from the databases... ' # Get the [Beats] objects that are [timeWindow] seconds in length # and that end [amountOfTimeBeforeBeg] seconds before an abnormal # cardiac rhythm begins. fileName = '../listOfBeatsObjs/listOfBeatsObjs' + str( amountOfTimeBeforeBeg) + '-' + str(timeWindow) fileExists = os.path.isfile(fileName) #if (True): if (not (fileExists)): doCreateTextFiles = False listOfBeatsObjs = getData(amountOfTimeBeforeBeg, timeWindow, doCreateTextFiles) with open(fileName, 'w') as f: pickle.dump([listOfBeatsObjs], f) else: with open(fileName) as f: listOfBeatsObjs = pickle.load(f)[0] print 'Completed! \n' # ******************************************************** # DIVISION OF ECG SIGNALS INTO TRAINING AND TESTING DATA # ******************************************************* print 'Dividing the ECG signals into training and testing data...' # The fraction of the [Beats] objects that should be a part of the # training data. trainingFract = 0.5
import readData as rd import _pickle as cPickle import numpy as np import models from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix trainX, trainY, testX, testY = rd.getData('./Datasets/en-gb0-short.tsv', 0.7) def getEvaluations(y_true, y_pred): results = [] results.append(accuracy_score(y_true, y_pred)) results.append(precision_score(y_true, y_pred, average='macro')) results.append(recall_score(y_true, y_pred, average='macro')) results.append(f1_score(y_true, y_pred, average='macro')) return results def getTrainedDT(dump_bool=0): try: with open('./Trained Models/DT.pickle', 'rb') as file: clf_DT = cPickle.load(file) return clf_DT except: print('Trained DT model not found, Re-training...') return models.trainDT(trainX, trainY, dump_bool) def getTrainedRF(dump_bool=0):
opt = Adam(learning_rate=0.01) modelObj.compile(loss='mse', optimizer=opt) modelHist = modelObj.fit(X_train, y_Train, validation_split=val_split, shuffle=True, epochs=epochs, batch_size=batchSize) Analyze(modelHist) modelObj.save('model.h5') else: new_model = load_model('model.h5') modelHist = new_model.fit(X_train, y_Train, validation_split=val_split, shuffle=True, epochs=epochs, batch_size=batchSize) Analyze(modelHist) new_model.save('model.h5') # main entry point if __name__ == "__main__": # play some images. # utils.playSome(X_train, 0) X_train, Y_Train = readData.getData(filePath='A:/driving_log.csv') plt.hist(Y_Train, bins=30) plt.show() Train(X_train, Y_Train)
# # Doc : Gradient descent used to trains our logistic regression # from readData import getData from function import getSum0 import re theta0 = 0.0 learningRate = 0.01 age, chd = getData() print "training algorithm ..." while (1): tmpTheta0 = learningRate * (getSum0(theta0, age, chd) / len(chd)) if (abs(tmpTheta0) < 0.0001): break theta0 = theta0 - tmpTheta0 # # the folowing 5 line is use to update theta0 in our sigmoid function file # oldFile = open("SigmoidFunction/SigmoidFunction.py").read() oldFile = re.sub("theta0 = [-]*\d*\.\d*", "theta0 = " + str(theta0), oldFile) newFile = open("SigmoidFunction/SigmoidFunction.py", 'w') newFile.write(oldFile) newFile.close() # print "done"
def genTrainingData(): channel_0_x, channel_0_y = rd.getData( 'OpenBCISession_2020-04-25_15-29-52-eyeblink', None, 0, None) fft = ft.fftData(channel_0_x, channel_0_y, None)
self.sharing = sharing self.GRU = GRU READ_OPTION = "NORMAL" downstream = True sharing = False GRU = False config = Config(READ_OPTION=READ_OPTION, downstream=downstream, sharing=sharing, GRU=GRU) if config.READ_OPTION == "NORMAL": train_sentences_de, train_sentences_en, valid_sentences_de, valid_sentences_en, test_sentences_de, test_sentences_en, wids = readData.getData( trainingPoints=700, validPoints=400) elif config.READ_OPTION == "KNIGHTHOLDOUT": train_sentences_de, train_sentences_en, valid_sentences_de, valid_sentences_en, test_sentences_de, test_sentences_en, wids = readData.getDataKnightHoldOut( trainingPoints=1000) reverse_wids = readData.reverseDictionary(wids) print len(train_sentences_de) print len(train_sentences_en) print len(valid_sentences_de) print len(valid_sentences_en) VOCAB_SIZE_DE = len(wids) VOCAB_SIZE_EN = VOCAB_SIZE_DE
# # Doc : K-Means algorithme apply to car data # from sys import exit from readData import getData from random import seed, randint import matplotlib.pyplot as plt from function import assignmentStep, computeCentroid seed() acceleration, topSpeed = getData() r1 = randint(0, (len(acceleration) - 1)) r2 = randint(0, (len(acceleration) - 1)) while (r1 == r2): r2 = randint(0, (len(acceleration) - 1)) c1 = (0.0, 0.0) c2 = (0.0, 0.0) tmpC1 = (acceleration[r1], topSpeed[r1]) tmpC2 = (acceleration[r2], topSpeed[r2]) while (tmpC1 != c1 and tmpC2 != c2): c1 = tmpC1 c2 = tmpC2 lstC1, lstC2 = assignmentStep(c1, c2, acceleration, topSpeed) tmpC1 = computeCentroid(lstC1) tmpC2 = computeCentroid(lstC2)