currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print '\n' '----Plot NCEP - %s----' % titletime ### Alott time series yearmin = 1979 yearmax = 2015 years = np.arange(yearmin, yearmax + 1, 1) months = [ r'Jan', r'Feb', r'Mar', r'Apr', r'May', r'Jun', r'Jul', r'Aug', r'Sep', r'Oct', r'Nov', r'Dec' ] ### Read in functions lats, lons, h7 = NP.readNCEP(directorydata, years, 'heights', '700') latq = np.where(lats >= 70)[0] lats = lats[latq] h7 = h7[:, :, latq, :] ### calculate climo def climo(var, years, yearmin, yearmax): """ Calculates climatology based on given years """ yr = np.where((years >= yearmin) & (years <= yearmax))[0] meanvar = np.nanmean(var[yr, :, :, :], axis=0)
currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print '\n' '----Plot NCEP - %s----' % titletime ### Alott time series yearmin = 1979 yearmax = 2015 years = np.arange(yearmin, yearmax + 1, 1) months = [ r'Jan', r'Feb', r'Mar', r'Apr', r'May', r'Jun', r'Jul', r'Aug', r'Sep', r'Oct', r'Nov', r'Dec' ] ### Read in functions lats, lons, tas = NP.readNCEP(directorydata, years, 'tas', '925') ### calculate climo def climo(var, years, yearmin, yearmax): """ Calculates climatology based on given years """ yr = np.where((years >= yearmin) & (years <= yearmax))[0] meanvar = np.nanmean(var[yr, :, :, :], axis=0) print 'Completed: Calculated mean climatology!' return meanvar
currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print '\n' '----Plot NCEP - %s----' % titletime ### Alott time series yearmin = 1948 yearmax = 2015 years = np.arange(yearmin,yearmax+1,1) months = [r'Jan',r'Feb',r'Mar',r'Apr',r'May',r'Jun',r'Jul',r'Aug', r'Sep',r'Oct',r'Nov',r'Dec'] ### Read in functions lats,lons,slp = NP.readNCEP(directorydata,years,'slp','surface') ### Slice above 70 latq = np.where(lats >=70)[0] lats = lats[latq] lats = np.squeeze(lats) slp = slp[:,:,latq,:] ### calculate climo def climo(var,years,yearmin,yearmax): """ Calculates climatology based on given years """ print '\n>>> Using climo function!' yr = np.where((years >= yearmin) & (years <= yearmax))[0]
import read_NCEP as NP import nclcmaps as ncm ### Define directories directorydata1 = '/home/zlabe/Surtsey/NCEP/' directorydata2 = '/home/zlabe/Surtsey3/' ### Alott time series yearmin = 1979 yearmax = 2015 years = np.arange(yearmin, yearmax + 1, 1) varnames = 'slp' ### Call functions lat1, lon1, var = NP.readNCEP(directorydata1, years, varnames, 'surface') ### Read new lat/lon grid files = 'CESM_large_ensemble/SIT/interp_1deg/' filename = directorydata2 + files + 'b.e11.B20TRC5CNBDRD.f09_g16.002.cice.h.hi_nh.192001-200512.nc' data = Dataset(filename) lat2 = data.variables['lat'][:] lon2 = data.variables['lon'][:] data.close() if lat2.ndim == 1: if lon2.ndim == 1: lon2, lat2 = np.meshgrid(lon2, lat2) print 'Made meshgrid of new lats/lons!' if lat1.ndim == 1: