Exemplo n.º 1
0
def bin_data(var1,
             var2,
             ax,
             normalize,
             redshift,
             filename,
             nbins=10,
             sim='MR'):
    data_path = get_data_dir()
    df = fetch_lgalaxies(redshift=redshift,
                         data_path=data_path,
                         simulation=sim)
    df = make_selection(df, redshift=redshift)

    x = df[var1]
    y = df[var2]

    x = x.as_matrix()
    y = y.as_matrix()

    median, bin_centres, per_50, per_16, per_84, per_25, per_75 = fit_median(
        x, y, nbins)
    np.savetxt(
        './binned_data/' + filename + '_z' + str(redshift) + '.txt',
        np.c_[bin_centres, median, per_50, per_16, per_84, per_25, per_75])

    if redshift == 0:
        hb = ax[redshift].hexbin(x,
                                 y,
                                 gridsize=150,
                                 bins='log',
                                 mincnt=5,
                                 cmap='gist_gray')
        min = hb.norm.vmin
        max = hb.norm.vmax
        normalize = matplotlib.colors.Normalize(vmin=min, vmax=max)
        #print (normalize)
    else:
        ax[redshift].hexbin(x,
                            y,
                            gridsize=150,
                            bins='log',
                            mincnt=5,
                            cmap='gist_gray')  #,norm=normalize)

    import pickle
    fout = open('./pkl_hists/' + filename + '_z' + str(redshift) + '.pkl',
                'wb')
    cloudpickle.dump(ax[redshift], fout)

    return bin_centres, median, per_50, per_16, per_84, per_25, per_75, normalize
Exemplo n.º 2
0
def bin_data2(var1, var2, redshift, filename, nbins=10, sim='MR'):
    df = fetch_lgalaxies(redshift=redshift,
                         data_path='../prepare_output/',
                         simulation=sim)
    #df = fetch_lgalaxies(redshift=redshift,simulation='MR')
    df = make_selection(df, redshift=redshift)

    x = df[var1]
    y = df[var2]

    x = x.as_matrix()
    y = y.as_matrix()

    median, bin_centres, per_50, per_16, per_84, per_25, per_75 = fit_median(
        x, y, nbins)
    return bin_centres, median, per_50, per_16, per_84, per_25, per_75
Exemplo n.º 3
0
def bin_highz_data(var1, var2, redshift, filename, nbins=10):
    df = fetch_lgalaxies(redshift=redshift,
                         data_path='../prepare_output/',
                         simulation='MR')
    #df = fetch_lgalaxies(redshift=redshift,simulation='MR')
    df = make_selection(df, redshift=redshift)

    x = df[var1]
    y = df[var2]

    x = x.as_matrix()
    y = y.as_matrix()

    median, bin_centres, per_50, per_16, per_84, per_25, per_75 = fit_median(
        x, y, nbins)
    np.savetxt(
        './binned_data/' + filename + '_z' + str(redshift) + '.txt',
        np.c_[bin_centres, median, per_50, per_16, per_84, per_25, per_75])

    return bin_centres, median, per_50, per_16, per_84, per_25, per_75
Exemplo n.º 4
0
                        sharey=False,
                        figsize=(9, 9))
ax = axs.reshape(-1)
fig.subplots_adjust(hspace=0.3)
fig.subplots_adjust(wspace=0.3)

dfs = []
DR = []
DMdensity = []
z = []

for loop in range(9, 14):

    data_path = get_data_dir()
    df = fetch_lgalaxies(redshift=loop, data_path=data_path, simulation='MR')
    df = make_selection(df, redshift=loop)

    new_df = pd.DataFrame()

    new_df['SM'] = df['SM']
    new_df['DM'] = df['DM']
    new_df['OX_Z'] = df['OX_Z']
    new_df['SFR'] = df['Sfr']
    new_df['DR_AGB'] = df['DustRate_AGB']
    new_df['DR_SNII'] = df['DustRate_SNII']
    new_df['DR_SNIA'] = df['DustRate_SNIA']
    new_df['DR_GROW'] = df['DustRate_GROW']
    new_df['DR_DEST'] = df['DustRate_DEST']

    dfs.append(new_df)
Exemplo n.º 5
0
def plot_SM_DM(redshift_low, redshift_high, filename):
    #fig, axs = plt.subplots(nrows=3, ncols=3, sharex=True, sharey=True, figsize=(9,9))
    #ax = axs.reshape(-1)
    plt.figure(figsize=(9, 9))
    redshift = 0
    normalize = 0

    df = fetch_lgalaxies(redshift=redshift,
                         data_path='../prepare_output/',
                         simulation='MR')
    df = make_selection(df, redshift=redshift)
    x = df[df.SM > 9].SM
    y = df[df.SM > 9].DM

    df2 = fetch_lgalaxies(redshift=redshift,
                          data_path='../prepare_output/',
                          simulation='MRII')
    df2 = make_selection(df2, redshift=redshift)
    x2 = df2['SM']
    y2 = df2['DM']

    bin_centres, median, per_50, per_16, per_84, per_25, per_75 = bin_data2(
        'SM', 'DM', redshift, filename, nbins=30, sim='MR')
    bin_centres2, median2, per_502, per_162, per_842, per_252, per_752 = bin_data2(
        'SM', 'DM', redshift, filename, nbins=30, sim='MRII')

    hb = plt.hexbin(x2,
                    y2,
                    gridsize=150,
                    bins='log',
                    mincnt=1,
                    cmap='gist_gray')
    min = hb.norm.vmin
    max = hb.norm.vmax
    normalize = matplotlib.colors.Normalize(vmin=min, vmax=max)
    #ax[redshift].hexbin(x,y,gridsize=150,bins='log',mincnt=5,cmap='gist_gray')#,norm=normalize)

    print(min, max)

    #normalize  = matplotlib.colors.Normalize(vmin=0, vmax=4)
    plt.hexbin(x,
               y,
               gridsize=150,
               bins='log',
               mincnt=1,
               cmap='gist_gray',
               norm=normalize)

    #plt.hexbin(x2,y2,gridsize=150,bins='log',mincnt=1,cmap='gist_gray')#,norm=normalize)

    plt.xlim([6, 11.97])
    plt.ylim([0, 9.98])

    #fig.text(8.2,0.3,"z = "+str(loop), fontsize = 16)

    #plot_params(ax[loop],loop,'SM','DM')
    #plot_observations(ax[loop],loop,"SM_DM")

    plt.plot(bin_centres,
             per_50,
             c='k',
             zorder=10,
             linewidth=2,
             label='L-Galaxies')
    plt.plot(bin_centres, per_16, 'k--', zorder=10, linewidth=2)
    plt.plot(bin_centres, per_84, 'k--', zorder=10, linewidth=2)

    plt.plot(bin_centres2,
             per_502,
             c='r',
             zorder=10,
             linewidth=2,
             label='L-Galaxies')
    plt.plot(bin_centres2, per_162, 'r--', zorder=10, linewidth=2)
    plt.plot(bin_centres2, per_842, 'r--', zorder=10, linewidth=2)

    #[i.set_linewidth(2.1) for i in ax[loop].spines.values()]

    pylab.savefig('./figs/' + filename + '.png', bbox_inches=0)