Exemplo n.º 1
0
def get_distritos():
    distritos = loadShapeFile('data/distritos/DISTRITOS_20200101_MADRID.shp')

    pob_file = pd.read_excel('data/distritos/dist_pob.xls',
                             header=4,
                             usecols=['Distrito',
                                      'Total']).rename(columns={
                                          'Total': 'Inhabitants',
                                          'Distrito': 'Name'
                                      })
    pob_file['Name'] = pob_file['Name'].str.capitalize()
    distritos = distritos.join(pob_file)

    return distritos
Exemplo n.º 2
0
def get_barrios():
    barrios = loadShapeFile('data/barrios/barrios.shp')
    names_b = []
    for nom in barrios['DESBDT']:
        name = nom.split(' ', 1)[-1]
        names_b.append(name)

    barrios['Name'] = np.array(names_b)
    pob_file = pd.read_excel(
        'data/barrios/barrios_pob.xls', header=4,
        usecols=['Total']).rename(columns={'Total': 'Inhabitants'})
    barrios = barrios.join(pob_file)
    barrios = barrios.drop(['DESBDT'], axis=1)

    return barrios
Exemplo n.º 3
0
def get_secciones_censales():
    census = pd.read_csv('data/CensoMadrid_2019.csv', sep=';',
                         header=0).rename(columns={
                             'Total': 'Inhabitants',
                             'Edad (grupos quinquenales)': 'Edad'
                         })
    census = census.loc[census['Sexo'] == 'Ambos Sexos'].loc[
        census['Sección'] != 'TOTAL'].loc[census['Edad'] == 'Total']
    census = census.set_index('Sección')
    census['Inhabitants'] = pd.to_numeric(census['Inhabitants'].str.replace(
        '.', ''))
    # Combine the census population data with the ShapeFile of seccionesCensales
    seccionesCensales_shp = loadShapeFile(
        'data/secciones_censales/SECC_CE_20200101_MADRID.shp')
    census = census['Inhabitants']
    census = seccionesCensales_shp.join(census, on='CUSEC')
    return census
Exemplo n.º 4
0
def get_distritos(census):

    distritos = loadShapeFile('data/distritos/DISTRITOS_20200101_MADRID.shp')
    dist_names = [
        'Centro', 'Arganzuela', 'Retiro', 'Salamanca', 'Chamartín', 'Tetuán',
        'Chamberi', 'Fuencarral-El Pardo', 'Moncloa-Aravaca', 'Latina',
        'Carabanchel', 'Usera', 'Puente de Vallecas', 'Moratalaz',
        'Ciudad Lineal', 'Hortaleza', 'Villaverde', 'Villa de Vallecas',
        'Vicálvaro', 'San-Blas Canillejas', 'Barajas'
    ]
    dist_inhabitants = [0] * 21
    # Use the inhabitants from the census areas and their CDIS value to get inhabitants in districts
    for i in range(len(census.index)):
        dist_inhabitants[int(census['CDIS'][i]) -
                         1] += census['Inhabitants'][i]
    distritos['Name'] = dist_names
    distritos['Inhabitants'] = dist_inhabitants

    return distritos
Exemplo n.º 5
0
def get_secciones_censales():
    columns = pd.read_excel(
        'data/secciones_censales/2801_CensoMadrid2019.xls').loc[5]
    census = pd.read_excel('data/secciones_censales/2801_CensoMadrid2019.xls',
                           names=columns,
                           header=8,
                           index_col=0)
    census.index = census.index.str.strip()
    census = census.iloc[:4417]
    census = census.groupby(census.index).sum()

    # Combine the census population data with the ShapeFile of seccionesCensales
    seccionesCensales_shp = loadShapeFile(
        'data/secciones_censales/SECC_CE_20200101_MADRID.shp')
    census_inhabitants = census.rename({'Total': 'Inhabitants'},
                                       axis=1)['Inhabitants']
    census_inhabitants = seccionesCensales_shp.join(census_inhabitants,
                                                    on='CUSEC')
    return census_inhabitants
Exemplo n.º 6
0
        type=str,
        default='data/sentinel/sent_B08.jp2',
        help=
        "String containing the location to the sentinel2 image in the B08 band."
    )
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = arg_parse()

    green_build_join(args.all_spaces, args.merge_green_spaces,
                     args.merge_build_spaces)

    buildSpaces = loadShapeFile('data/buildSpaces.shp')
    greenSpaces = loadShapeFile('data/greenSpaces.shp')
    if args.green_proximity:
        greenSpaces = greenProxInd(greenSpaces)
        greenSpaces.to_file('data/greenSpaces.shp', driver='ESRI Shapefile')

    if args.get_census:
        print('Starting calculations for censal areas')
        census = get_secciones_censales()
        census = indexes_calc(census, greenSpaces, buildSpaces)
        census = proxToSection(census, greenSpaces)
        NDVI_img(args.sent_B04, args.sent_B08, args.NDVI_img_out)
        census = calc_NDVI_section(census, args.NDVI_img_out)

        # Save results into a new ShapeFile
        census = geopandas.GeoDataFrame(census, geometry='geometry')
Exemplo n.º 7
0
    ndviImage = rasterio.open(img_out,'w',
                              driver='Gtiff',
                              width=band4.width,
                              height = band4.height,
                              count=1, crs=band4.crs,
                              transform=band4.transform,
                              dtype='float64')

    ndviImage.write(ndvi,1)
    ndviImage.close()

if __name__ == '__main__':
    # Load ShapeFiles of green areas and censal areas
    columns = pd.read_excel('data/secciones_censales/2801_CensoMadrid2019.xls').loc[5]
    census = pd.read_excel('data/secciones_censales/2801_CensoMadrid2019.xls', names=columns, header=8, index_col=0)
    census.index = census.index.str.strip()
    census = census.iloc[:4417]
    census = census.groupby(census.index).sum()

    # Combine the census population data with the ShapeFile of seccionesCensales
    seccionesCensales_shp = loadShapeFile('data/secciones_censales/SECC_CE_20200101_MADRID.shp')
    section = census.rename({'Total': 'Inhabitants'}, axis=1)['Inhabitants']
    section = seccionesCensales_shp.join(section, on='CUSEC')

    img_NDVI = 'out/ndviImage.tiff'
    b4 = 'data/sentinel/sent_B04.jp2'
    b8 = 'data/sentinel/sent_B08.jp2'

    NDVI_img(b4, b8, img_NDVI)
    calc_NDVI_section(section, img_NDVI)
Exemplo n.º 8
0
        total = 0
        num = 0
        greenInSection = [
            greenSpaces['proxIndex'][pos]
            for pos in idx.intersection(section.bounds)
        ]
        for ind in greenInSection:
            total += ind
            num += 1

        try:
            prox = total / num
        except ZeroDivisionError:
            prox = 0
        prox_avg.append(prox)

    sectionAreas['prox_avg'] = np.array(prox_avg)
    return sectionAreas


if __name__ == '__main__':

    # Load ShapeFiles of green areas and section areas
    greenSpaces = loadShapeFile('data/greenSpaces.shp')
    sectionAreas = loadShapeFile('out/indexes.shp')
    tic = process_time()
    sect = proxToSection(sectionAreas, greenSpaces)
    toc = process_time()
    print('Time:' + str(toc - tic))
    #greenSpaces.to_file('data/greenSpaces.shp', driver='ESRI Shapefile')
Exemplo n.º 9
0
def green_build_join(all_spaces, merge_green_spaces, merge_build_spaces):

    if all_spaces:
        nums = []
        buildSpaces = pd.DataFrame([])
        greenSpaces = pd.DataFrame([])

        for i in range(21):
            if i < 9:
                nums.append('D0' + str(i + 1))
            else:
                nums.append('D' + str(i + 1))
        print(
            'Creating build spaces and green spaces from all the census areas')
        for folder in nums:
            is_green = 1
            is_build = 1
            const = []
            greens = []
            try:
                buildingsUnderConstruction_shp = loadShapeFile(
                    'data/carto2/' + folder +
                    '/03_EDIFICIO_EN_CONSTRUCCION_P.shp')
                const.append(buildingsUnderConstruction_shp)
            except:
                is_build = 0

            try:
                buildings_shp = loadShapeFile('data/carto2/' + folder +
                                              '/03_EDIFICIO_P.shp')
                const.append(buildings_shp)
            except:
                is_build = 0

            try:
                undefinedBuildings_shp = loadShapeFile(
                    'data/carto2/' + folder + '/03_EDIFICIO_INDEFINIDO_P.shp')
                const.append(undefinedBuildings_shp)
            except:
                is_build = 0

            if buildSpaces.empty:
                buildSpaces = pd.concat([
                    buildings_shp, buildingsUnderConstruction_shp,
                    undefinedBuildings_shp
                ])
            else:
                if is_build:
                    buildSpaces = pd.concat([
                        buildSpaces, buildings_shp,
                        buildingsUnderConstruction_shp, undefinedBuildings_shp
                    ])
                else:
                    for shp in const:
                        buildSpaces = pd.concat([buildSpaces, shp])

            try:
                urbanGardens_shp = loadShapeFile('data/carto2/' + folder +
                                                 '/11_HUERTO_URBANO_P.shp')
                greens.append(urbanGardens_shp)
            except:
                is_green = 0

            try:
                gardenAreas_shp = loadShapeFile('data/carto2/' + folder +
                                                '/11_ZONA_AJARDINADA_P.shp')
                greens.append(gardenAreas_shp)
            except:
                is_green = 0

            try:
                gardenInPatios_shp = loadShapeFile(
                    'data/carto2/' + folder +
                    '/11_ZONA_AJARDINADA_SOBRE_PATIO_P.shp')
                greens.append(gardenInPatios_shp)
            except:
                is_green = 0

            if greenSpaces.empty:
                greenSpaces = pd.concat([gardenAreas_shp, gardenInPatios_shp])
            else:
                if is_green:
                    greenSpaces = pd.concat([
                        greenSpaces, gardenAreas_shp, urbanGardens_shp,
                        gardenInPatios_shp
                    ])
                else:
                    for shp in greens:
                        greenSpaces = pd.concat([greenSpaces, shp])

        buildSpaces.to_file('data/buildSpaces.shp', driver='ESRI Shapefile')
        greenSpaces.to_file('data/greenSpaces.shp', driver='ESRI Shapefile')

    else:
        if merge_green_spaces:
            # Load shapefiles of green and constructed areas
            urbanGardens_shp = loadShapeFile(
                'data/Carto_1000/11_HUERTO_URBANO_P.shp')
            gardenAreas_shp = loadShapeFile(
                'data/Carto_1000/11_ZONA_AJARDINADA_P.shp')
            gardenInPatios_shp = loadShapeFile(
                'data/Carto_1000/11_ZONA_AJARDINADA_SOBRE_PATIO_P.shp')
            greenSpaces = pd.concat(
                [urbanGardens_shp, gardenAreas_shp, gardenInPatios_shp])
            greenSpaces.to_file('data/greenSpaces.shp',
                                driver='ESRI Shapefile')

        if merge_build_spaces:
            buildings_shp = loadShapeFile(
                'data/Carto_1000/03_EDIFICIO_EN_CONSTRUCCION_P.shp')
            buildingsUnderConstruction_shp = loadShapeFile(
                'data/Carto_1000/03_EDIFICIO_INDEFINIDO_P.shp')
            undefinedBuildings_shp = loadShapeFile(
                'data/Carto_1000/03_EDIFICIO_P.shp')
            buildSpaces = pd.concat([
                buildings_shp, buildingsUnderConstruction_shp,
                undefinedBuildings_shp
            ])
            buildSpaces.to_file('data/buildSpaces.shp',
                                driver='ESRI Shapefile')