Exemplo n.º 1
0
def readDBandSplit(dbfile):
    r = reader.tabSepReader(dbfile)
    fulltrain, testDict = split.split(
        r.getR(), SEED1)
    trainingDict, evalDict = split.split(
        fulltrain, SEED2)
    output = open("splits.npz", "wb")
    cPickle.dump(r, output, -1)
    cPickle.dump(trainingDict, output, -1)
    cPickle.dump(fulltrain, output, -1)
    cPickle.dump(testDict, output, -1)
    cPickle.dump(evalDict, output, -1)
    output.close()
    return r, trainingDict, fulltrain, testDict, evalDict
Exemplo n.º 2
0
# Reading a database file called "u.data"
import reader
r = reader.tabSepReader("u.data")

# Get 10 recommendations with simple algorithms
# for userid 201.
#import primitive
#import external
#rand = primitive.randomRec(r.getR())
#getRec = external.getExternalRec(rand.getRec, r)
#print getRec(97, 10)
#
## Train a MF model.
#import mf
#
#reg = 0.01  # Regularization constant
#ler = 0.1  # Learning rate
#features = 150  # number of features
#EPOCHS = 3  # number of epochs
#
#W, H = mf.learnModel(
#    r.getMaxUid(), r.getMaxIid(),
#    reg, reg, reg, ler, r.getR(),
#    features, EPOCHS,
#    r.numberOfTransactions,
#    mf.logLoss, mf.dLogLoss)  # With logLoss it will be BPRMF
#
## Get recommendations with a MF model.
#import test
#import external
#t = test.MFtest(W, H, r.getR())