def edit_101(infile, outfile, ID, inds_shift, inds_del):
    cbf = rwb.read_cbf_file(infile)
    cbf['ID'] = ID
    cbf['MET'] = cbf['MET'][:, :-2]
    '''cbf['MET'][:,6] = 0
    cbf['OTHER_OBS']['MFire']['mean'] = -9999
    cbf['OTHER_OBS']['MFire']['unc'] = -9999'''
    count_real = 0
    for parprior, parpriorunc in zip(cbf['PARPRIORS'], cbf['PARPRIORUNC']):
        if parprior == -9999:
            continue
        else:
            ind_in = np.where(cbf['PARPRIORS'] == parprior)[0][0]
            cbf['PARPRIORS'][inds_shift[count_real]] = parprior
            cbf['PARPRIORUNC'][inds_shift[count_real]] = parpriorunc
            if ind_in != inds_shift[count_real]:
                cbf['PARPRIORS'][ind_in] = -9999
                cbf['PARPRIORUNC'][ind_in] = -9999
            count_real += 1

    for ind in inds_del:
        cbf['PARPRIORS'][ind] = -9999
        cbf['PARPRIORUNC'][ind] = -9999

    rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(cbf, outfile)
    return
def delete_model_parpriors(infile, outfile, ind_out):
    # read cbf file using readwritebinary and edit parpriors, parpriorunc
    # inds is a list
    cbf = rwb.read_cbf_file(infile)
    for ind in ind_out:
        cbf['PARPRIORS'][ind_out] = -9999
        cbf['PARPRIORUNC'][ind_out] = -9999
    rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(cbf, outfile)
    return
def edit_model_fire(infile, outfile):
    # remove columns from met for certain models
    cbf = rwb.read_cbf_file(infile)
    print(cbf['MET'].shape)
    cbf['MET'][:, 6] = -9999
    cbf['OTHER_OBS']['MFire']['mean'] = -9999
    cbf['OTHER_OBS']['MFire']['unc'] = -9999
    rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(cbf, outfile)
    return
def shift_model_parpriors(infile, outfile, inds_out):
    # read cbf file using readwritebinary and edit parpriors, parpriorunc
    # inds is a list
    cbf = rwb.read_cbf_file(infile)

    count_real = 0
    for parprior, parpriorunc in zip(cbf['PARPRIORS'], cbf['PARPRIORUNC']):
        if parprior == -9999:
            continue
        else:
            ind_in = np.where(cbf['PARPRIORS'] == parprior)[0][0]
            cbf['PARPRIORS'][inds_out[count_real]] = parprior
            cbf['PARPRIORUNC'][inds_out[count_real]] = parpriorunc
            if ind_in != inds_out[count_real]:
                cbf['PARPRIORS'][ind_in] = -9999
                cbf['PARPRIORUNC'][ind_in] = -9999
            count_real += 1
    rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(cbf, outfile)
    return
Exemplo n.º 5
0
def main():

    # set run information to read
    model_id = sys.argv[1]
    mcmc_id = sys.argv[2]  # 119 for normal, 3 for DEMCMC
    n_iter = sys.argv[3]
    nbe_optimization = sys.argv[4]  # OFF OR ON
    ens_size = 500
    assim_type = '_p25adapted'
    suffix = '_clipped_'

    if mcmc_id == '119':
        frac_save_out = str(int(int(n_iter) / 500))
        n_chains_agg = 4
    elif mcmc_id == '3':
        frac_save_out = str(int(
            int(n_iter) / 500 *
            100))  # n_iterations/ frac_save_out * 100 will be ensemble size
        n_chains_agg = 2

    # set directories
    cur_dir = os.getcwd() + '/'
    misc_dir = cur_dir + '/../../misc/'
    cbf_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/'
    cbr_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/'
    cbr_ef_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '_ef/' + model_id + '/'
    plot_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/plots/'
    parnames = autil.get_parnames('../../misc/', model_id)

    # choose which features to use
    include_soilgrids = True
    include_poolobs = True
    include_gl_fracs = False

    # choose which model formulation to use
    train_full_ensemble = False
    rescale = True
    include_interactions = False
    include_squares = False
    include_all_polys = False
    do_feature_selection = False
    do_PLS = True
    n_features_select = int(sys.argv[5])
    write_to_csv = False

    # choose which tasks to run
    opt_feature_select = True
    submit_ic_opt = True
    submit_forward = False

    ############################################################################################################################################
    ############################# develop and train EF models ###################################################################################

    # load list of land pixels
    pixels = list(set([file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')]))
    pixels.sort()

    # load list of cbrs
    cbr_files = glob.glob(cbr_dir + '*MCMC' + mcmc_id + '_' + n_iter +
                          '_*.cbr')

    # load bestchains for cbr_files
    conv_chains = read_pickle(cbr_dir + model_id + assim_type + '_ALL' +
                              '_MCMC' + mcmc_id + '_' + n_iter +
                              '_best_subset.pkl')
    conv_chains.columns = ['pixel', 'bestchains',
                           'conv']  #rename columns for easier access
    ic_inds = autil.get_inds_ic(
        model_id)  # get indices of initial condition parameters

    # load globcover csv for land cover regression comparison
    gl_fracs = read_csv(misc_dir + 'globcover_fracs.csv', header=0)
    n_features_gl = len(gl_fracs.columns) - 1
    suffix_gl = 'gl_'

    # get number of predictors
    n_features = (
        rwb.read_cbf_file(glob.glob(cbf_dir + '*.cbf')[0])['nomet'] - 3
    ) * 2  # remove 3 corresponding to day number and CO2, multiply by 2 (mean and sd)

    if do_PLS:
        suffix += 'PLS_'

    if include_soilgrids:
        soilgrids = read_csv('../../misc/soilgrids_defined_pixels_manual.csv',
                             header=0)
        n_soilgrids = len(soilgrids.columns) - 1
        n_features += n_soilgrids
        suffix += 'soilgrids_'

    if include_poolobs:
        n_poolobs = 4
        n_features += n_poolobs
        suffix += 'poolobs_'

    if include_gl_fracs:
        n_features += n_features_gl
        suffix += suffix_gl

    # fill X and Y
    n_regr_models = len(parnames)
    X = np.ones(
        (len(pixels), n_features)) * np.nan  # shape n_samples, n_features
    y = np.ones(
        (n_regr_models, len(pixels))) * np.nan  # shape n_pars, n_samples
    y_full_ens = np.ones((ens_size, n_regr_models,
                          len(pixels))) * np.nan  # shape n_pars, n_samples

    X_gl = np.ones((len(pixels), n_features_gl)) * np.nan
    y_gl = np.ones((n_regr_models, len(pixels))) * np.nan

    for pixel in pixels:
        if (len(
                glob.glob(cbr_dir + '*MCMC' + mcmc_id + '_' + n_iter + '_' +
                          pixel + '*.cbr')) >
                0) & (pixel in conv_chains['pixel'].values):
            if conv_chains.loc[conv_chains['pixel'] ==
                               pixel]['conv'].values[0] == 0:
                continue
            else:
                ind = pixels.index(pixel)
                print(pixel)

                # get met
                cbf_file = glob.glob(cbf_dir + '*' + pixel + '.cbf')[0]
                met = rwb.read_cbf_file(cbf_file)['MET']
                met = met[:,
                          [1, 2, 3, 6, 7,
                           8]]  # don't use index 0, 5 (day numbers) or 4 (Co2)
                X_end = met.shape[1] * 2
                X[ind, :X_end] = np.concatenate(
                    (np.nanmean(met, axis=0), np.nanstd(met, axis=0)))
                #X[ind,:met.shape[1]*12] = fill_X_met_12mo(X[ind,:met.shape[1]*12], met)#np.nanmean(met, axis=0)

                # append to X if include_soil_canopy_vars
                if include_soilgrids:
                    if (int(pixel) in soilgrids['pixel'].values):
                        X[ind, X_end:(X_end + n_soilgrids)] = soilgrids[
                            soilgrids['pixel'] == int(pixel)].values[0][1:]
                    X_end = X_end + n_soilgrids

                if include_poolobs:
                    lai, agb, som = rwb.read_cbf_file(
                        cbf_file)['OBS']['LAI'], rwb.read_cbf_file(
                            cbf_file)['OBS']['ABGB'], rwb.read_cbf_file(
                                cbf_file)['OBS']['SOM']

                    if (len(lai) > 0) & (len(agb) > 0) & (len(som) > 0):
                        X[ind, X_end:(X_end + n_poolobs)] = np.array([
                            np.nanmean(lai[lai > 0]),
                            np.nanstd(lai[lai > 0]),
                            np.nanmean(agb[agb > 0]),
                            np.nanmean(som[som > 0])
                        ])
                    X_end = X_end + n_poolobs

                if include_gl_fracs:
                    if (int(pixel) in gl_fracs['pixel'].values):
                        X[ind, X_end:(X_end + n_features_gl)] = gl_fracs.loc[
                            gl_fracs['pixel'] == int(pixel)].values[0][1:]
                    X_end = X_end + n_features_gl

                # fill globcover X
                if int(pixel) in gl_fracs['pixel'].values:
                    X_gl[ind, :] = gl_fracs.loc[gl_fracs['pixel'] == int(
                        pixel)].values[0][1:]

                # get parameter information
                # get pixel's convergent chain numbers
                best_chains = conv_chains.loc[
                    conv_chains['pixel'] == pixel]['bestchains'].values[0][1:]
                print(best_chains)

                # aggregate bestchains from optimal posteriors
                cbr_data = []
                for chain in best_chains:

                    file = [
                        i for i in cbr_files
                        if pixel + '_' + chain + '.cbr' in i
                    ][0]
                    cbr_data.append(
                        autil.modulus_Bday_Fday(
                            rwb.read_cbr_file(file, {'nopars': len(parnames)}),
                            parnames))
                    #cbr_data.append(rwb.read_cbr_file(file, {'nopars': len(parnames)}))

                cbr_data = np.vstack(cbr_data)
                y[:, ind] = np.nanmedian(cbr_data, axis=0)
                y_gl[:, ind] = np.nanmedian(cbr_data, axis=0)

                indices = np.random.choice(
                    cbr_data.shape[0], ens_size,
                    replace=False)  # only take a subset of cbr rows

                y_full_ens[:, :, ind] = cbr_data[
                    indices, :]  #reshape_cbr(cbr_data, ens_size*n_chains_agg)

    if not train_full_ensemble:

        f_bic = open(
            misc_dir + 'env_filter_manual/fs/bic_fs' +
            suffix.partition('fs')[0] + model_id + '_MCMC' + mcmc_id + '_' +
            n_iter + assim_type + '.csv', 'a')
        w_bic = csv.writer(f_bic)

        # EF regressions
        reg_test_preds_list, card_test_preds_list, reg_train_preds_list, card_train_preds_list, pixels_r, suffix, k = run_regressions(
            X, y, pixels, rescale, include_interactions, include_squares,
            include_all_polys, do_feature_selection, do_PLS, write_to_csv,
            w_bic, n_features_select, suffix, ens_size, n_regr_models,
            n_features)

        f_bic.close()

        # globcover comparison
        '''gl_reg_test_preds_list, gl_card_test_preds_list, gl_reg_train_preds_list, gl_card_train_preds_list, gl_pixels_r, gl_suffix, gl_k = run_regressions(X_gl, y_gl, pixels, 
            rescale, False, False, False, False, False, False, w_bic, n_features_select, 
            suffix_gl, ens_size, n_regr_models, n_features_gl)'''

    else:
        suffix += 'full_ens_'

        icount = 0
        for i in sample(range(y_full_ens.shape[0]), 100):
            print(icount)
            rtest, ctest, rtrain, ctrain, pixels_r, suffix, k = run_regressions(
                X, y_full_ens[i, :, :], pixels, rescale, include_interactions,
                include_squares, include_all_polys, do_feature_selection,
                n_features_select, suffix, ens_size, n_regr_models, n_features)

            reg_test_preds_list = [np.nanmedian(
                ri, axis=0) for ri in rtest] if icount == 0 else [
                    np.vstack((np.nanmedian(ri, axis=0), rfull))
                    for ri, rfull in zip(rtest, reg_test_preds_list)
                ]
            card_test_preds_list = np.copy(ctest) if icount == 0 else [
                np.vstack((ci, cfull))
                for ci, cfull in zip(ctest, card_test_preds_list)
            ]
            reg_train_preds_list = [np.nanmedian(
                ri, axis=0) for ri in rtrain] if icount == 0 else [
                    np.vstack((np.nanmedian(ri, axis=0), rfull))
                    for ri, rfull in zip(rtrain, reg_train_preds_list)
                ]
            card_train_preds_list = np.copy(ctrain) if icount == 0 else [
                np.vstack((ci, cfull))
                for ci, cfull in zip(ctrain, card_train_preds_list)
            ]

            icount += 1

    # fill csv

    f_test = open(
        misc_dir + 'env_filter_manual/fs/fs_test' + suffix.partition('fs')[0] +
        model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', 'a')
    wr_test = csv.writer(f_test)

    f_train = open(
        misc_dir + 'env_filter_manual/fs/fs_train' +
        suffix.partition('fs')[0] + model_id + '_MCMC' + mcmc_id + '_' +
        n_iter + assim_type + '.csv', 'a')
    wr_train = csv.writer(f_train)

    f_test_preds = open(
        misc_dir + 'env_filter_manual/par_preds/par_preds_test' + suffix +
        model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', 'a')
    wr_test_preds = csv.writer(f_test_preds)

    f_train_preds = open(
        misc_dir + 'env_filter_manual/par_preds/par_preds_train' + suffix +
        model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', 'a')
    wr_train_preds = csv.writer(f_train_preds)

    print('TEST:')
    #plot_scatter_test_pred(card_test_preds_list, reg_test_preds_list, k, pixels_r, parnames, wr_test, wr_test_preds, plot_dir+'env_filter/', 'par_preds_test'+suffix+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type, train_full_ensemble, write_to_csv)
    #plot_scatter_test_pred(gl_card_test_preds_list, gl_reg_test_preds_list, gl_k, gl_pixels_r, parnames, wr_test, wr_test_preds, plot_dir+'env_filter/', 'par_preds_test'+gl_suffix+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type, train_full_ensemble, write_to_csv)

    print('. . . . . \n\nTRAIN:')
    #plot_scatter_test_pred(card_train_preds_list, reg_train_preds_list, k, pixels_r, parnames, wr_train, wr_train_preds, plot_dir+'env_filter/', 'par_preds_train'+suffix+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type, train_full_ensemble, write_to_csv)
    #plot_scatter_test_pred(gl_card_train_preds_list, gl_reg_train_preds_list, gl_k, gl_pixels_r, parnames, wr_train, wr_train_preds, plot_dir+'env_filter/', 'par_preds_train'+gl_suffix+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type, train_full_ensemble, write_to_csv)

    f_test.close()
    f_train.close()
    f_test_preds.close()
    f_train_preds.close()

    ############################################################################################################################################
    ################################### find optimal number of features for each parameter #####################################################

    if opt_feature_select:

        test_rmse = read_csv(misc_dir + 'env_filter_manual/fs/fs_test' +
                             suffix.partition('fs')[0] + model_id + '_MCMC' +
                             mcmc_id + '_' + n_iter + assim_type + '.csv',
                             header=None)
        test_rmse.columns = [
            item for sublist in [['n_features_select'], parnames]
            for item in sublist
        ]
        test_rmse.sort_values('n_features_select')

        train_rmse = read_csv(misc_dir + 'env_filter_manual/fs/fs_train' +
                              suffix.partition('fs')[0] + model_id + '_MCMC' +
                              mcmc_id + '_' + n_iter + assim_type + '.csv',
                              header=None)
        train_rmse.columns = [
            item for sublist in [['n_features_select'], parnames]
            for item in sublist
        ]
        train_rmse.sort_values('n_features_select')

        x = test_rmse['n_features_select'].values

        opt_fs = plot_train_test(x,
                                 train_rmse,
                                 test_rmse,
                                 parnames,
                                 savepath=plot_dir + 'train_test/',
                                 savename=model_id + '_MCMC' + mcmc_id +
                                 suffix.partition('fs')[0],
                                 norm=False)
        opt_fs = plot_train_test(x,
                                 train_rmse,
                                 test_rmse,
                                 parnames,
                                 savepath=plot_dir + 'train_test/',
                                 savename=model_id + '_MCMC' + mcmc_id +
                                 suffix.partition('fs')[0],
                                 norm=True)
        print(opt_fs)
        '''bic_data = read_csv(misc_dir +'env_filter_manual/fs/bic_fs_soilgrids_poolobs_'+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type + '.csv', header=None)
        bic_data.columns = [item for sublist in [['n_features_select'],parnames] for item in sublist]
        bic_data.columns.sort_values('n_features_select')
        
        x = bic_data['n_features_select'].values
        
        opt_fs = plot_train_test(x, bic_data, bic_data*np.nan, parnames, savepath=plot_dir+'train_test/', savename='bic_'+model_id+'_MCMC'+mcmc_id+suffix.partition('fs')[0])
        print(opt_fs)'''

    ############################################################################################################################################
    ################################### copy cbfs and substitute pars for IC optimization ######################################################

    # set directories for CARDAMOM runs
    mdf_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_MDF/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_MDF/'
    runmodel_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_GENERAL/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_GENERAL/'
    cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/'
    cbf_ef_ic_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '_ef_ic/' + model_id + '/'
    cbr_ef_dir = '../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '_ef/' + model_id + '/'
    output_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/'
    output_ef_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '_ef/' + model_id + '/'

    # select which pixels to submit
    os.chdir(cbf_dir)
    cbf_files = glob.glob('*.cbf')
    cbf_files.sort()
    os.chdir(cur_dir + '/../')

    if submit_ic_opt:

        txt_filename = 'ef_ic_assim_list_' + model_id + assim_type + '_MCMC' + mcmc_id + '_' + n_iter + '.txt'
        txt_file = open(txt_filename, 'w')

        for cbf_file in cbf_files:
            print(cbf_file)

            cbf_data = rwb.read_cbf_file(cbf_dir + cbf_file)
            cbf_pixel = cbf_file[-8:-4]

            if cbf_pixel in pixels_r:

                parpriors = np.concatenate(
                    (retrieve_preds(cbf_pixel, opt_fs, suffix,
                                    misc_dir + 'env_filter_manual/par_preds/'),
                     np.ones(50 - len(parnames)) * -9999.))
                parpriorunc = np.concatenate(
                    (np.ones(len(parnames)) * 1.001,
                     np.ones(50 - len(parnames)) * -9999.))

                # except ICs
                for ic_ind in ic_inds:
                    parpriors[ic_ind] = -9999.
                    parpriorunc[ic_ind] = -9999.

                # except NBE unc
                if nbe_optimization == 'ON':
                    parpriors[len(parnames) - 1] = -9999.
                    parpriorunc[len(parnames) - 1] = -9999.

                cbf_data['PARPRIORS'] = parpriors.reshape(-1, 1)
                cbf_data['PARPRIORUNC'] = parpriorunc.reshape(-1, 1)

                fp = cbf_file[:-9] + suffix.partition('fs')[0] + cbf_pixel
                fa = cbf_file[:
                              -9] + '_MCMC' + mcmc_id + '_' + n_iter + suffix.partition(
                                  'fs')[0] + 'assim_' + cbf_pixel
                rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(
                    cbf_data, cbf_ef_ic_dir + fp + '.cbf')

                txt_file.write(
                    '%sCARDAMOM_MDF.exe %s%s %s%s %s 0 %s 0.001 %s 1000' %
                    (mdf_dir, cbf_ef_ic_dir[3:], fp + '.cbf', cbr_ef_dir,
                     fa + '.cbr', n_iter, frac_save_out, mcmc_id))
                txt_file.write('\n')

        txt_file.close()

        sh_file = open(txt_filename[:-3] + 'sh', 'w')
        autil.fill_in_sh(sh_file,
                         array_size=len(pixels_r),
                         n_hours=6,
                         txt_file=txt_filename,
                         combined=False)

    if submit_forward:

        txt_filename = 'ef_ic_forward_list_' + model_id + assim_type + '_MCMC' + mcmc_id + '_' + n_iter + '.txt'
        txt_file = open(txt_filename, 'w')

        for cbf_file in cbf_files:
            print(cbf_file)

            cbf_data = rwb.read_cbf_file(cbf_dir + cbf_file)
            cbf_pixel = cbf_file[-8:-4]

            if cbf_pixel in pixels_r:

                fa = cbf_file[:
                              -9] + '_MCMC' + mcmc_id + '_' + n_iter + suffix.partition(
                                  'fs')[0] + 'assim_' + cbf_pixel
                cbr_assim = rwb.read_cbr_file(
                    glob.glob(cbr_ef_dir + fa + '.cbr')[0],
                    {'nopars': len(parnames)})

                ff = cbf_file[:
                              -9] + '_MCMC' + mcmc_id + '_' + n_iter + suffix.partition(
                                  'fs')[0] + 'forward_' + cbf_pixel
                cbr_forward = retrieve_preds(
                    cbf_pixel, opt_fs, suffix,
                    misc_dir + 'env_filter_manual/par_preds/')
                for ic_ind in ic_inds:
                    cbr_forward[ic_ind] = np.nanmedian(cbr_assim[:, ic_ind])
                cbr_forward = cbr_forward.reshape(1, len(parnames))

                rwb.write_cbr_file(cbr_forward, cbr_ef_dir + ff + '.cbr')

                txt_file.write(
                    '%sCARDAMOM_RUN_MODEL.exe %s%s %s%s %s%s %s%s %s%s %s%s' %
                    (runmodel_dir, cbf_dir[3:], cbf_file, cbr_ef_dir,
                     ff + '.cbr', output_ef_dir, 'fluxfile_' + ff + '.bin',
                     output_ef_dir, 'poolfile_' + ff + '.bin', output_ef_dir,
                     'edcdfile_' + ff + '.bin', output_ef_dir,
                     'probfile_' + ff + '.bin'))
                txt_file.write('\n')

        txt_file.close()

        sh_file = open(txt_filename[:-3] + 'sh', 'w')
        autil.fill_in_sh(sh_file,
                         array_size=len(pixels_r),
                         n_hours=1,
                         txt_file=txt_filename,
                         combined=False)

    return
def edit_model_met_shape(infile, outfile, n_met_to_drop):
    # remove columns from met for certain models
    cbf = rwb.read_cbf_file(infile)
    cbf['MET'] = cbf['MET'][:, :(n_met_to_drop * -1)]
    rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(cbf, outfile)
    return
def edit_model_met(infile, outfile):
    # read cbf file using readwritebinary and edit ID flag
    cbf = rwb.read_cbf_file(infile)
    cbf['MET'] = cbf['MET'][:, :-2]
    rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(cbf, outfile)
    return
def edit_model_id(infile, outfile, ID):
    # read cbf file using readwritebinary and edit ID flag
    cbf = rwb.read_cbf_file(infile)
    cbf['ID'] = ID
    rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(cbf, outfile)
    return