def test_funksvd_ev_build(self):
        k = 5
        save_path = 'evaluation/precision/'
        recommender = FunkSVDRecs()

        er = EvaluationRunner(0,
                              None,  # builder
                              recommender,
                              k,
                              params={'k': 20,
                                      'save_path': save_path + 'model/'})

        result = er.calculate(1, 5)
        print(result)

        recs1 = recommender.recommend_items('14620', num=5)

        k2 = 7

        recommender2 = FunkSVDRecs()

        er = EvaluationRunner(0,
                              None,  # builder,
                              recommender2,
                              k2,
                              params={'k': 20,
                                      'save_path': save_path + 'model/'})

        result = er.calculate(1, 5)
        print(result)

        recs2 = recommender2.recommend_items('14620', num=7)
        self.compare_recs(recs1, recs2)
    def test_rec(self):

        recommender = FunkSVDRecs(self.save_path)
        recs = recommender.recommend_items_by_ratings('1',
                                                      [{'movie_id': AVENGERS, 'rating': 7},
                                                       {'movie_id': ALIEN, 'rating': 10},
                                                       {'movie_id': CAPTAIN_AMERICA, 'rating': 6}], num=2)
        self.assertIsNotNone(recs)
        self.assertEqual(len(recs), 2)
 def test_rec2(self):
     recommender = FunkSVDRecs(self.save_path)
     recs = recommender.recommend_items_by_ratings('5',
                                                   [{'movie_id': AVENGERS, 'rating': 1}], num=5)
     self.assertIsNotNone(recs)
     self.assertEqual(len(recs), 5)
     top = [r[0] for r in recs][:2]
     self.assertIn(HARRY, top, '{} was missing from {}'.format(HARRY, top))
     self.assertIn(JACQUES, top, '{} was missing from {}'.format(JACQUES, top))
Exemplo n.º 4
0
 def test_rec2(self):
     recommender = FunkSVDRecs(self.save_path)
     recs = recommender.recommend_items_by_ratings('5',
                                                   [{'movie_id': AVENGERS, 'rating': 1}], num=5)
     self.assertIsNotNone(recs)
     self.assertEqual(len(recs), 5)
     top = [r[0] for r in recs][:2]
     self.assertIn(HARRY, top, '{} was missing from {}'.format(HARRY, top))
     self.assertIn(JACQUES, top, '{} was missing from {}'.format(JACQUES, top))
Exemplo n.º 5
0
    def test_rec(self):

        recommender = FunkSVDRecs(self.save_path)
        recs = recommender.recommend_items_by_ratings('1',
                                                      [{'movie_id': AVENGERS, 'rating': 7},
                                                       {'movie_id': ALIEN, 'rating': 10},
                                                       {'movie_id': CAPTAIN_AMERICA, 'rating': 6}], num=2)
        self.assertIsNotNone(recs)
        self.assertEqual(len(recs), 2)
Exemplo n.º 6
0
    def test_rec_increasing2(self):

        recommender = FunkSVDRecs(self.save_path)
        recs4 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=4)
        self.assertIsNotNone(recs4)
        self.assertEqual(len(recs4), 4)
        self.assertAlmostEqual(recs4[1][1]['prediction'], 7.812836963)
        recs6 = recommender.recommend_items_by_ratings('5',
                                                       [{'movie_id': AVENGERS, 'rating': 1}], num=6)
        self.assertIsNotNone(recs6)
        self.assertEqual(len(recs6), 6)
        self.compare_recs(recs4, recs6)

        recommender = FunkSVDRecs(self.save_path)
        recs42 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=4)
        self.compare_recs(recs4, recs42)

        recs1 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=7)
        recs2 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=9)

        self.compare_recs(recs1, recs2)
    def test_rec_increasing(self):
        recommender = FunkSVDRecs(self.save_path)
        recs1 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=2)
        self.assertIsNotNone(recs1)
        self.assertEqual(len(recs1), 2)

        recs2 = recommender.recommend_items_by_ratings('5',
                                                       [{'movie_id': AVENGERS, 'rating': 1}], num=3)
        self.assertIsNotNone(recs2)
        self.assertEqual(len(recs2), 3)

        self.assertEqual(recs1[0],recs2[0] )
        self.assertEqual(recs1[1],recs2[1] )
Exemplo n.º 8
0
    def test_rec_increasing(self):
        recommender = FunkSVDRecs(self.save_path)
        recs1 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=2)
        self.assertIsNotNone(recs1)
        self.assertEqual(len(recs1), 2)

        recs2 = recommender.recommend_items_by_ratings('5',
                                                       [{'movie_id': AVENGERS, 'rating': 1}], num=3)
        self.assertIsNotNone(recs2)
        self.assertEqual(len(recs2), 3)

        self.assertEqual(recs1[0],recs2[0] )
        self.assertEqual(recs1[1],recs2[1] )
Exemplo n.º 9
0
def evaluate_funksvd_recommender():
    save_path = './models/funkSVD/'
    K = 20
    timestr = time.strftime("%Y%m%d-%H%M%S")
    file_name = '{}-funksvd-k.csv'.format(timestr)

    with open(file_name, 'a', 1) as logfile:
        logfile.write("rak,pak,mae,k\n")

        builder = MatrixFactorization(save_path)

        for k in np.arange(0, 20, 2):

            recommender = FunkSVDRecs(save_path + 'model/')

            er = EvaluationRunner(0,
                                  builder,
                                  recommender,
                                  k,
                                  params={
                                      'k': 20,
                                      'save_path': save_path + 'model/'
                                  })

            result = er.calculate(20, 10)
            builder = None

            map = result['map']
            mae = result['mae']
            ar = result['ar']
            logfile.write("{}, {}, {}, {}, {}, {}\n".format(ar, map, mae, k))

            logfile.flush()
Exemplo n.º 10
0
def recs_funksvd(request, user_id, num=6):
    sorted_items = FunkSVDRecs().recommend_items(user_id, num)

    data = {
        'user_id': user_id,
        'data': sorted_items
    }
    return JsonResponse(data, safe=False)
    def test_rec_increasing2(self):

        recommender = FunkSVDRecs(self.save_path)
        recs4 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=4)
        self.assertIsNotNone(recs4)
        self.assertEqual(len(recs4), 4)
        self.assertAlmostEqual(recs4[1][1]['prediction'], 7.812836963)
        recs6 = recommender.recommend_items_by_ratings('5',
                                                       [{'movie_id': AVENGERS, 'rating': 1}], num=6)
        self.assertIsNotNone(recs6)
        self.assertEqual(len(recs6), 6)
        self.compare_recs(recs4, recs6)

        recommender = FunkSVDRecs(self.save_path)
        recs42 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=4)
        self.compare_recs(recs4, recs42)

        recs1 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=7)
        recs2 = recommender.recommend_items_by_ratings('5',
                                                      [{'movie_id': AVENGERS, 'rating': 1}], num=9)

        self.compare_recs(recs1, recs2)
    def test_funksvd_ev_build(self):
        k = 5
        save_path = 'evaluation/precision/'
        recommender = FunkSVDRecs()

        er = EvaluationRunner(0,
                              None,  # builder
                              recommender,
                              k,
                              params={'k': 20,
                                      'save_path': save_path + 'model/'})

        result = er.calculate(1, 5)
        print(result)

        recs1 = recommender.recommend_items('14620', num=5)

        k2 = 7

        recommender2 = FunkSVDRecs()

        er = EvaluationRunner(0,
                              None,  # builder,
                              recommender2,
                              k2,
                              params={'k': 20,
                                      'save_path': save_path + 'model/'})

        result = er.calculate(1, 5)
        print(result)

        recs2 = recommender2.recommend_items('14620', num=7)
        self.compare_recs(recs1, recs2)
Exemplo n.º 13
0
def evaluate_funksvd_recommender():
    save_path = '/Users/u0157492/Projects/moviegeek/evaluation/precision/'
    K = 20
    timestr = time.strftime("%Y%m%d-%H%M%S")
    file_name = '{}-funksvd-k.csv'.format(timestr)

    with open(file_name, 'a', 1) as logfile:
        logfile.write("rak,pak,mae,k,user_coverage,movie_coverage\n")

        #builder = MatrixFactorization(save_path)
        for k in np.arange(5, 50, 2):

            recommender = FunkSVDRecs()

            er = EvaluationRunner(
                0,
                None,  #builder,
                recommender,
                k,
                params={
                    'k': 20,
                    'save_path': save_path + 'model/'
                })

            result = er.calculate(1, 5)

            builder = None  # Enough to train it once.

            #user_coverage, movie_coverage = RecommenderCoverage(recommender).calculate_coverage()
            user_coverage, movie_coverage = 0, 0
            pak = result['pak']
            mae = result['mae']
            rak = result['rak']
            logfile.write("{}, {}, {}, {}, {}, {}\n".format(
                rak, pak, mae, k, user_coverage, movie_coverage))
            #logfile.write("{}, {}, {}, {}\n".format(rak, pak, mae, K))
            logfile.flush()
Exemplo n.º 14
0
    args = parser.parse_args()

    print(args.fwls)
    k = 10
    cov = None
    if args.fwls:
        logger.debug("evaluating coverage of fwls")
        cov = RecommenderCoverage(FeatureWeightedLinearStacking)
        cov.calculate_coverage(K=k, recName='fwls{}'.format(k))

    if args.cf:
        logger.debug("evaluating coverage of cf")
        cov = RecommenderCoverage(NeighborhoodBasedRecs())
        cov.calculate_coverage(K=k, recName='cf{}'.format(k))

    if args.cb:
        logger.debug("evaluating coverage of cb")
        cov = RecommenderCoverage(ContentBasedRecs())
        cov.calculate_coverage(K=k, recName='cb{}'.format(k))

    if args.ltr:
        logger.debug("evaluating coverage of ltr")
        cov = RecommenderCoverage(BPRRecs())
        cov.calculate_coverage(K=k, recName='bpr{}'.format(k))

    if args.funk:
        logger.debug("evaluating coverage of funk")
        cov = RecommenderCoverage(FunkSVDRecs())

        cov.calculate_coverage(K=k, recName='funk{}'.format(k))