Exemplo n.º 1
0
 def MAP(self,rank):
     
     Map = MeanAveragePrecision()
     for elem in rank:
         Map.load(self.rating,elem)
     result=Map.computr()
     print "the MAP of ranking :" ,result
     return result
Exemplo n.º 2
0
    def test_RANK_MeanAveragePrecision(self):
        mavgp = MeanAveragePrecision()
        GT_DECISION = [1, 2, 4]
        TEST_DECISION = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        mavgp.load(GT_DECISION, TEST_DECISION)

        GT_DECISION = [1, 4, 8]
        mavgp.load(GT_DECISION, TEST_DECISION)

        GT_DECISION = [3, 5, 9, 25, 39, 44, 56, 71, 89, 123]
        TEST_DECISION = [
            123, 84, 56, 6, 8, 9, 511, 129, 187, 25, 38, 48, 250, 113, 3
        ]
        mavgp.load(GT_DECISION, TEST_DECISION)

        assert_equal(mavgp.compute(), 0.707222)
Exemplo n.º 3
0
    def test_RANK_MeanAveragePrecision(self):
        mavgp = MeanAveragePrecision()
        GT_DECISION = [1, 2, 4]
        TEST_DECISION = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        mavgp.load(GT_DECISION, TEST_DECISION)

        GT_DECISION = [1, 4, 8]
        mavgp.load(GT_DECISION, TEST_DECISION)

        GT_DECISION = [3, 5, 9, 25, 39, 44, 56, 71, 89, 123]
        TEST_DECISION = [123, 84, 56, 6, 8, 9, 511, 129, 187, 25, 38, 48, 250, 113, 3]
        mavgp.load(GT_DECISION, TEST_DECISION)

        assert_equal(mavgp.compute(), 0.707222)
Exemplo n.º 4
0
n = 100
step = 2
start = 10

(prec, recall, F1) = 0.0, 0.0, 0.0
count = 0
precision = []
recall = []
roc_auc = dict()
total_recall = 0.0
total_mean_prec = 0.0
inner_count = 0
filename = "/home/dhiraj/projects/results/avg_precision_results_10-60.txt"

mavgp = MeanAveragePrecision()


with open(filename, "w") as myFile:
    while count < n:
        users = db.get_people_sorted_artists(start, step)

        for user in users:
            TEST_DECISION = []
            GT_DECISION = []

            s_matrix_vector = db.get_sparse_matrix_vector(str(user["_id"]).encode('utf-8'))
            if s_matrix_vector and len(s_matrix_vector[0]['array']) > 0:
                inner_count += 1
                if inner_count < (step+1):
                    v_vectors = functions.compute_v_vectors(s_matrix_vector[0]['col_index'])
Exemplo n.º 5
0
step = 0
start = 119

(prec, recall, F1) = 0.0, 0.0, 0.0
count = 0
precision = []
recall = []
roc_auc = dict()
total_recall = 0.0
total_prec = 0.0
total_f1 = 0.0
total_mean_prec = 0.0
inner_count = 0
filename = "/home/dhiraj/projects/results/dataset2/precision_results.txt"

mavgp = MeanAveragePrecision()
with open(filename, "w") as myFile:
    #while count < n:
        users = db.get_people_sorted_artists(start, step)

        for user in users:
            TEST_DECISION = []
            GT_DECISION = []

            s_matrix_vector = db.get_sparse_matrix_vector(str(user["_id"]).encode('utf-8'))
            if s_matrix_vector and len(s_matrix_vector[0]['array']) > 0:
                # inner_count += 1
                # if inner_count < (step+1):
                    v_vectors = functions.compute_v_vectors(s_matrix_vector[0]['col_index'])
                    counts = dict()
                    for vec in s_matrix_vector[0]['array']: