Exemplo n.º 1
0
def model(X_train,
          Y_train,
          X_test,
          Y_test,
          num_iterations=2000,
          learning_rate=0.5,
          print_cost=False):
    w, b = inicializarconcero(X_train.shape[0])
    parameters, grads, costs = optimizar(w, b, X_train, Y_train,
                                         num_iterations, learning_rate,
                                         print_cost)

    w = parameters["w"]
    b = parameters["b"]

    Y_prediction_test = predict4(w, b, X_test)
    Y_prediction_train = predict4(w, b, X_train)

    d = {
        "costos": costs,
        "Y_pred_test": Y_prediction_test,
        "Y_pred_variable": Y_prediction_train,
        "w": w,
        "b": b,
        "learning_rate": learning_rate,
        "cantidad_iteraciones": num_iterations
    }

    return d
Exemplo n.º 2
0
print("db = " + str(grads["db"]))
print("cost = " + str(cost))
print("-----------------------------------")
params, grads, costs = optimizar(w,
                                 b,
                                 X,
                                 y,
                                 num_iterations=10,
                                 learning_rate=0.009,
                                 print_costo=False)
print("w = " + str(params["w"]))
print("b = " + str(params["b"]))
print("dw = " + str(grads["dw"]))
print("db = " + str(grads["db"]))
print("-----------------------------------")
print("predictions = " + str(predict4(w, b, X)))


def gradiente_aprendisaje(X,
                          y,
                          dimensiones,
                          curvaaprendisaje=0.01,
                          num_iterations=200,
                          print_costo=True,
                          theta="relu",
                          initialization_method="he"):

    np.random.seed(1)

    costo_list = []
Exemplo n.º 3
0
print("db = " + str(grads["db"]))
print("cost = " + str(cost))
print("-----------------------------------")
params, grads, costs = optimizar(w,
                                 b,
                                 X,
                                 y,
                                 num_iterations=10,
                                 learning_rate=0.009,
                                 print_costo=False)
print("w = " + str(params["w"]))
print("b = " + str(params["b"]))
print("dw = " + str(grads["dw"]))
print("db = " + str(grads["db"]))
print("-----------------------------------")
print("predictions = " + str(predict4(w, b, X)))


def gradiente_aprendisaje(X,
                          y,
                          dimensiones,
                          curvaaprendisaje=0.01,
                          num_iterations=200,
                          print_costo=True,
                          theta="relu",
                          initialization_method="he"):

    np.random.seed(1)

    costo_list = []
Exemplo n.º 4
0
print("db = " + str(grads["db"]))
print("cost = " + str(cost))
print("-----------------------------------")
params, grads, costs = optimizar(w,
                                 b,
                                 X,
                                 y,
                                 num_iterations=10,
                                 learning_rate=0.009,
                                 print_costo=False)
print("w = " + str(params["w"]))
print("b = " + str(params["b"]))
print("dw = " + str(grads["dw"]))
print("db = " + str(grads["db"]))
print("-----------------------------------")
print("predictions = " + str(predict4(w, b, X)))


def gradiente_aprendisaje(X,
                          y,
                          dimensiones,
                          curvaaprendisaje=0.01,
                          num_iterations=200,
                          print_costo=True,
                          theta="relu",
                          initialization_method="he"):

    np.random.seed(1)

    costo_list = []
Exemplo n.º 5
0
print("db = " + str(grads["db"]))
print("cost = " + str(cost))
print("-----------------------------------")
params, grads, costs = optimizar(w,
                                 b,
                                 X,
                                 y,
                                 num_iterations=10,
                                 learning_rate=0.009,
                                 print_costo=False)
print("w = " + str(params["w"]))
print("b = " + str(params["b"]))
print("dw = " + str(grads["dw"]))
print("db = " + str(grads["db"]))
print("-----------------------------------")
print("predictions = " + str(predict4(w, b, X)))


def gradiente_aprendisaje(X,
                          y,
                          dimensiones,
                          curvaaprendisaje=0.01,
                          num_iterations=200,
                          print_costo=True,
                          theta="relu",
                          initialization_method="he"):

    np.random.seed(1)

    costo_list = []