Exemplo n.º 1
0
    def __init__(self, generated_dir, K=4, MIN_DEPTH=2, MAX_DEPTH=500):
        self.to_c = rot_matrix(-np.pi / 2, -np.pi / 2, 0)
        self.MAX_DEPTH = MAX_DEPTH
        self.MIN_DEPTH = MIN_DEPTH

        name = f"{LstSqComputer.name}_{K}"
        ffi, lib = load_code(generated_dir, name)

        # wrap c functions
        def residual_jac(x, poses, img_positions):
            out = np.zeros(((K * 2, 3)), dtype=np.float64)
            lib.jac_fun(ffi.cast("double *", x.ctypes.data),
                        ffi.cast("double *", poses.ctypes.data),
                        ffi.cast("double *", img_positions.ctypes.data),
                        ffi.cast("double *", out.ctypes.data))
            return out

        self.residual_jac = residual_jac

        def residual(x, poses, img_positions):
            out = np.zeros((K * 2), dtype=np.float64)
            lib.res_fun(ffi.cast("double *", x.ctypes.data),
                        ffi.cast("double *", poses.ctypes.data),
                        ffi.cast("double *", img_positions.ctypes.data),
                        ffi.cast("double *", out.ctypes.data))
            return out

        self.residual = residual

        def compute_pos_c(poses, img_positions):
            pos = np.zeros(3, dtype=np.float64)
            param = np.zeros(3, dtype=np.float64)
            # Can't be a view for the ctype
            img_positions = np.copy(img_positions)
            lib.compute_pos(ffi.cast("double *", self.to_c.ctypes.data),
                            ffi.cast("double *", poses.ctypes.data),
                            ffi.cast("double *", img_positions.ctypes.data),
                            ffi.cast("double *", param.ctypes.data),
                            ffi.cast("double *", pos.ctypes.data))
            return pos, param

        self.compute_pos_c = compute_pos_c
Exemplo n.º 2
0
    def __init__(self, generated_dir, K=5):
        self.MAX_TRACKS = 6000
        self.K = K

        # Array of tracks, each track has K 5D features preceded
        # by 5 params that inidicate [f_idx, last_idx, updated, complete, valid]
        # f_idx: idx of current last feature in track
        # idx of of last feature in frame
        # bool for whether this track has been update
        # bool for whether this track is complete
        # bool for whether this track is valid
        self.tracks = np.zeros((self.MAX_TRACKS, K + 1, 5))
        self.tracks[:] = np.nan

        name = f"{FeatureHandler.name}_{K}"
        ffi, lib = load_code(generated_dir, name)

        def merge_features_c(tracks, features, empty_idxs):
            lib.merge_features(ffi.cast("double *", tracks.ctypes.data),
                               ffi.cast("double *", features.ctypes.data),
                               ffi.cast("long long *", empty_idxs.ctypes.data))

        # self.merge_features = self.merge_features_python
        self.merge_features = merge_features_c
Exemplo n.º 3
0
  def __init__(self, folder, name, Q, x_initial, P_initial, dim_main, dim_main_err,  # pylint: disable=dangerous-default-value
               N=0, dim_augment=0, dim_augment_err=0, maha_test_kinds=[], global_vars=None, max_rewind_age=1.0, logger=logging):
    """Generates process function and all observation functions for the kalman filter."""
    self.msckf = N > 0
    self.N = N
    self.dim_augment = dim_augment
    self.dim_augment_err = dim_augment_err
    self.dim_main = dim_main
    self.dim_main_err = dim_main_err

    self.logger = logger

    # state
    x_initial = x_initial.reshape((-1, 1))
    self.dim_x = x_initial.shape[0]
    self.dim_err = P_initial.shape[0]
    assert dim_main + dim_augment * N == self.dim_x
    assert dim_main_err + dim_augment_err * N == self.dim_err
    assert Q.shape == P_initial.shape

    # kinds that should get mahalanobis distance
    # tested for outlier rejection
    self.maha_test_kinds = maha_test_kinds

    # process noise
    self.Q = Q

    # rewind stuff
    self.max_rewind_age = max_rewind_age
    self.rewind_t = []
    self.rewind_states = []
    self.rewind_obscache = []
    self.init_state(x_initial, P_initial, None)

    ffi, lib = load_code(folder, name, "kf")
    kinds, self.feature_track_kinds = [], []
    for func in dir(lib):
      if func[:len(name) + 3] == f'{name}_h_':
        kinds.append(int(func[len(name) + 3:]))
      if func[:len(name) + 4] == f'{name}_He_':
        self.feature_track_kinds.append(int(func[len(name) + 4:]))

    # wrap all the sympy functions
    def wrap_1lists(func_name):
      func = eval(f"lib.{name}_{func_name}", {"lib": lib})  # pylint: disable=eval-used

      def ret(lst1, out):
        func(ffi.cast("double *", lst1.ctypes.data),
             ffi.cast("double *", out.ctypes.data))
      return ret

    def wrap_2lists(func_name):
      func = eval(f"lib.{name}_{func_name}", {"lib": lib})  # pylint: disable=eval-used

      def ret(lst1, lst2, out):
        func(ffi.cast("double *", lst1.ctypes.data),
             ffi.cast("double *", lst2.ctypes.data),
             ffi.cast("double *", out.ctypes.data))
      return ret

    def wrap_1list_1float(func_name):
      func = eval(f"lib.{name}_{func_name}", {"lib": lib})  # pylint: disable=eval-used

      def ret(lst1, fl, out):
        func(ffi.cast("double *", lst1.ctypes.data),
             ffi.cast("double", fl),
             ffi.cast("double *", out.ctypes.data))
      return ret

    self.f = wrap_1list_1float("f_fun")
    self.F = wrap_1list_1float("F_fun")

    self.err_function = wrap_2lists("err_fun")
    self.inv_err_function = wrap_2lists("inv_err_fun")
    self.H_mod = wrap_1lists("H_mod_fun")

    self.hs, self.Hs, self.Hes = {}, {}, {}
    for kind in kinds:
      self.hs[kind] = wrap_2lists(f"h_{kind}")
      self.Hs[kind] = wrap_2lists(f"H_{kind}")
      if self.msckf and kind in self.feature_track_kinds:
        self.Hes[kind] = wrap_2lists(f"He_{kind}")

    self.set_globals = {}
    if global_vars is not None:
      for global_var in global_vars:
        self.set_globals[global_var] = getattr(lib, f"{name}_set_{global_var}")

    # wrap the C++ predict function
    def _predict_blas(x, P, dt):
      func = eval(f"lib.{name}_predict", {"lib": lib})  # pylint: disable=eval-used
      func(ffi.cast("double *", x.ctypes.data),
           ffi.cast("double *", P.ctypes.data),
           ffi.cast("double *", self.Q.ctypes.data),
           ffi.cast("double", dt))
      return x, P

    # wrap the C++ update function
    def fun_wrapper(f, kind):
      f = eval(f"lib.{name}_{f}", {"lib": lib})  # pylint: disable=eval-used

      def _update_inner_blas(x, P, z, R, extra_args):
        f(ffi.cast("double *", x.ctypes.data),
          ffi.cast("double *", P.ctypes.data),
          ffi.cast("double *", z.ctypes.data),
          ffi.cast("double *", R.ctypes.data),
          ffi.cast("double *", extra_args.ctypes.data))
        if self.msckf and kind in self.feature_track_kinds:
          y = z[:-len(extra_args)]
        else:
          y = z
        return x, P, y
      return _update_inner_blas

    self._updates = {}
    for kind in kinds:
      self._updates[kind] = fun_wrapper("update_%d" % kind, kind)

    def _update_blas(x, P, kind, z, R, extra_args=[]):  # pylint: disable=dangerous-default-value
        return self._updates[kind](x, P, z, R, extra_args)

    # assign the functions
    self._predict = _predict_blas
    # self._predict = self._predict_python
    self._update = _update_blas
Exemplo n.º 4
0
  def __init__(self, folder, name, Q, x_initial, P_initial, dim_main, dim_main_err,
               N=0, dim_augment=0, dim_augment_err=0, maha_test_kinds=[], global_vars=None):
    """Generates process function and all observation functions for the kalman filter."""
    self.msckf = N > 0
    self.N = N
    self.dim_augment = dim_augment
    self.dim_augment_err = dim_augment_err
    self.dim_main = dim_main
    self.dim_main_err = dim_main_err

    # state
    x_initial = x_initial.reshape((-1, 1))
    self.dim_x = x_initial.shape[0]
    self.dim_err = P_initial.shape[0]
    assert dim_main + dim_augment * N == self.dim_x
    assert dim_main_err + dim_augment_err * N == self.dim_err
    assert Q.shape == P_initial.shape

    # kinds that should get mahalanobis distance
    # tested for outlier rejection
    self.maha_test_kinds = maha_test_kinds

    self.global_vars = global_vars

    # process noise
    self.Q = Q

    # rewind stuff
    self.rewind_t = []
    self.rewind_states = []
    self.rewind_obscache = []
    self.init_state(x_initial, P_initial, None)

    ffi, lib = load_code(folder, name)
    kinds, self.feature_track_kinds = [], []
    for func in dir(lib):
      if func[:2] == 'h_':
        kinds.append(int(func[2:]))
      if func[:3] == 'He_':
        self.feature_track_kinds.append(int(func[3:]))

    # wrap all the sympy functions
    def wrap_1lists(name):
      func = eval("lib.%s" % name, {"lib": lib})

      def ret(lst1, out):
        func(ffi.cast("double *", lst1.ctypes.data),
             ffi.cast("double *", out.ctypes.data))
      return ret

    def wrap_2lists(name):
      func = eval("lib.%s" % name, {"lib": lib})

      def ret(lst1, lst2, out):
        func(ffi.cast("double *", lst1.ctypes.data),
             ffi.cast("double *", lst2.ctypes.data),
             ffi.cast("double *", out.ctypes.data))
      return ret

    def wrap_1list_1float(name):
      func = eval("lib.%s" % name, {"lib": lib})

      def ret(lst1, fl, out):
        func(ffi.cast("double *", lst1.ctypes.data),
             ffi.cast("double", fl),
             ffi.cast("double *", out.ctypes.data))
      return ret

    self.f = wrap_1list_1float("f_fun")
    self.F = wrap_1list_1float("F_fun")

    self.err_function = wrap_2lists("err_fun")
    self.inv_err_function = wrap_2lists("inv_err_fun")
    self.H_mod = wrap_1lists("H_mod_fun")

    self.hs, self.Hs, self.Hes = {}, {}, {}
    for kind in kinds:
      self.hs[kind] = wrap_2lists("h_%d" % kind)
      self.Hs[kind] = wrap_2lists("H_%d" % kind)
      if self.msckf and kind in self.feature_track_kinds:
        self.Hes[kind] = wrap_2lists("He_%d" % kind)

    if self.global_vars is not None:
      for var in self.global_vars:
        fun_name = f"set_{var.name}"
        setattr(self, fun_name, getattr(lib, fun_name))

    # wrap the C++ predict function
    def _predict_blas(x, P, dt):
      lib.predict(ffi.cast("double *", x.ctypes.data),
                  ffi.cast("double *", P.ctypes.data),
                  ffi.cast("double *", self.Q.ctypes.data),
                  ffi.cast("double", dt))
      return x, P

    # wrap the C++ update function
    def fun_wrapper(f, kind):
      f = eval("lib.%s" % f, {"lib": lib})

      def _update_inner_blas(x, P, z, R, extra_args):
        f(ffi.cast("double *", x.ctypes.data),
          ffi.cast("double *", P.ctypes.data),
          ffi.cast("double *", z.ctypes.data),
          ffi.cast("double *", R.ctypes.data),
          ffi.cast("double *", extra_args.ctypes.data))
        if self.msckf and kind in self.feature_track_kinds:
          y = z[:-len(extra_args)]
        else:
          y = z
        return x, P, y
      return _update_inner_blas

    self._updates = {}
    for kind in kinds:
      self._updates[kind] = fun_wrapper("update_%d" % kind, kind)

    def _update_blas(x, P, kind, z, R, extra_args=[]):
        return self._updates[kind](x, P, z, R, extra_args)

    # assign the functions
    self._predict = _predict_blas
    # self._predict = self._predict_python
    self._update = _update_blas