Exemplo n.º 1
0
def search_engine(graphdb):
    # setup
    engine = Engine("search")
    engine.search.setup(in_name="request", out_name="graph")

    ## Search
    def Search(query, **kwargs):
        query, graph = db_graph(graphdb, query)
        gid = query['graph']

        q = kwargs.pop("URI")
        # field = kwargs.pop("field", None)

        #g = query_istex(gid, q, field)
        g = query_rdf(gid, q)
        graph = merge(gid, graph, g)

        nodes = query['nodes']
        #g = graph_articles(gid, graph, weighting=["1"], all_articles=True, cut=100, uuids=nodes, **kwargs )
        return graph

    search = Optionable("RDFSearch")
    search._func = Search
    search.add_option(
        "URI", Text(default=u"http://silene.magistry.fr/data/nan/sinogram/好"))
    # search.add_option("field", Text(choices=[ u"*", u"istex", u"auteurs", u"refBibAuteurs", u"keywords" ], default=u"*"))
    # search.add_option("results_count", Numeric( vtype=int, min=1, default=10, help="Istex results count"))

    engine.search.set(search)
    return engine
Exemplo n.º 2
0
def explore_engine(graphdb):
    """ Prox engine """
    # setup
    engine = Engine("graph")
    engine.graph.setup(in_name="request", out_name="graph")

    ## Search
    def subgraph(query, size=50):

        gid = query['graph']
        uuids = [ q for q in query['units']]
        
        return expand_subgraph(graphdb, gid, uuids, limit= size/len(uuids) if len(uuids) else size )
        #return prox_subgraph(graphdb, gid, pzeros, size=size)

    graph_search = Optionable("GraphSearch")
    graph_search._func = Composable(subgraph)
    graph_search.add_option("size", Numeric( vtype=int, default=50))

    from cello.graphs.transform import VtxAttr
    graph_search |= VtxAttr(color=[(45, 200, 34), ])
    graph_search |= VtxAttr(type=1)

    engine.graph.set(graph_search)

    return engine
Exemplo n.º 3
0
def export_calc_engine(graphdb):
    def _export_calc(query, calc_id=None, **kwargs):

        if calc_id == None:
            return {'message': "No calc_id ", 'gid': calc_id, 'url': ""}

        query, graph = db_graph(graphdb, query)
        url = "http://calc.padagraph.io/_/cillex-%s" % calc_id
        print "_export_calc", query, calc_id, url

        headers, rows = istex.graph_to_calc(graph)
        print("* PUT %s %s " % (url, len(rows)))

        r = requests.put(url, data=istex.to_csv(headers, rows))
        url = "http://calc.padagraph.io/cillex-%s" % calc_id

        return {'message': "Calc exported ", 'gid': calc_id, 'url': url}

    export = Optionable("export_calc")
    export._func = _export_calc
    export.add_option(
        "calc_id",
        Text(
            default=None,
            help=
            "identifiant du calc, le calc sera sauvegardé vers l’adresse http://calc.padagraph.io/cillex-{calc-id}"
        ))

    engine = Engine("export")
    engine.export.setup(in_name="request", out_name="url")
    engine.export.set(export)

    return engine
Exemplo n.º 4
0
def import_calc_engine(graphdb):
    def _import_calc(query, calc_id=None, **kwargs):
        query, graph = db_graph(graphdb, query)
        if calc_id == None:
            return None
        url = "http://calc.padagraph.io/cillex-%s" % calc_id
        graph = istex.pad_to_graph(calc_id, url)
        graph['meta']['pedigree'] = pedigree.compute(graph)
        graph['properties']['description'] = url
        graphdb.graphs[calc_id] = graph
        return graph_articles(calc_id, graph, cut=100)

    comp = Optionable("import_calc")
    comp._func = _import_calc
    comp.add_option(
        "calc_id",
        Text(
            default=None,
            help=
            "identifiant du calc,le calc sera importé depuis l'adresse http://calc.padagraph.io/cillex-{calc-id}"
        ))

    engine = Engine("import_calc")
    engine.import_calc.setup(in_name="request", out_name="graph")
    engine.import_calc.set(comp)

    return engine
Exemplo n.º 5
0
def expand_prox_engine(graphdb):
    """
    prox with weights and filters on UNodes and UEdges types
    input:  {
                nodes : [ uuid, .. ],  //more complex p0 distribution
                weights: [float, ..], //list of weight
            }
    output: {
                graph : gid,
                scores : [ (uuid_node, score ), .. ]
            }
    """
    engine = Engine("scores")
    engine.scores.setup(in_name="request", out_name="scores")

    @Composable
    def Expand(query, **kwargs):

        query, graph = db_graph(graphdb, query)
        gid = query.get("graph")

        field = "*"
        expand = query['expand']
        nodes = query['nodes']
        vs = graph.vs.select(uuid_in=expand)

        if len(vs) == 0:
            raise ValueError('No such node %s' % expand)

        v = vs[0]
        if (v['nodetype'] == ("_%s_auteurs" % gid)):
            field = "auteurs"
            q = v['properties']['label']
        elif (v['nodetype'] == ("_%s_refBibAuteurs" % gid)):
            field = "refBibAuteurs"
            q = v['properties']['label']
        elif (v['nodetype'] == ("_%s_keywords" % gid)):
            field = "keywords"
            q = v['properties']['label']
        else:
            q = v['properties']['label']

        g = query_istex(gid, q, field)
        graph = merge(gid, graph, g, index=index, vid=vid)

        pz = [v.index]
        vs = extract(graph, pz, **kwargs)
        vs = [(graph.vs[i]['uuid'], v) for i, v in vs]
        articles = [(v['uuid'], 1.) for v in graph.vs
                    if v['nodetype'] == ("_%s_article" % gid)]
        return dict(articles + vs)

    scores = Optionable("scores")
    scores._func = Expand
    scores.name = "expand"
    engine.scores.set(scores)

    return engine
Exemplo n.º 6
0
def expand_prox_engine(graphdb):
    """
    prox with weights and filters on UNodes and UEdges types
    input:  {
                nodes : [ uuid, .. ],  //more complex p0 distribution
                weights: [float, ..], //list of weight
            }
    output: {
                graph : gid,
                scores : [ (uuid_node, score ), .. ]
            }
    """
    engine = Engine("scores")
    engine.scores.setup(in_name="request", out_name="scores")

    @Composable
    def Expand(query, **kwargs):

        query, graph = db_graph(graphdb, query)
        gid = query.get("graph")

        field = "*"
        nodes = query['nodes']
        vs = graph.vs.select(uuid_in=nodes)

        if len(vs) == 0:
            raise ValueError('No such node %s' % nodes)

        v = vs[0]
        q = v['properties']['URI']
        if (v['nodetype'] == "Entity"):
            q = v['properties']['URI']
        elif (v['nodetype'] == "Literal"):
            q = v['properties']['id']
        print(q)
        g = query_rdf(gid, q, escape=True)
        graph = merge(gid, graph, g)

        pz = [v.index]
        vs = extract(graph, pz, **kwargs)
        print(vs)
        vs = [(graph.vs[i]['uuid'], v) for i, v in vs]
        # articles = [ (v['uuid'], 1.) for v in graph.vs if v['nodetype'] == ("_%s_article" % gid) ]
        return dict(vs)

    scores = Optionable("scores")
    scores._func = Expand
    scores.name = "expand"
    engine.scores.set(scores)

    return engine
Exemplo n.º 7
0
def starred_engine(graphdb):
    """ Prox engine """
    # setup
    engine = Engine("graph")
    engine.graph.setup(in_name="request", out_name="graph")

    ## Search
    def subgraph(query, limit=200, prune=False):
        """
        :param mode: 
        """
        graph = db_graph(graphdb, query)
        return starred(graph, limit=100, prune=True)

    graph_search = Optionable("GraphSearch")
    graph_search._func = Composable(subgraph)
    graph_search.add_option("limit", Numeric(vtype=int, default=200))
    graph_search.add_option("prune", Boolean(default=True))

    from cello.graphs.transform import VtxAttr
    graph_search |= VtxAttr(color=[
        (45, 200, 34),
    ])
    graph_search |= VtxAttr(type=1)

    engine.graph.set(graph_search)

    return engine
Exemplo n.º 8
0
def additive_nodes_engine(graphdb):
    """ Additive engine
        add one or more nodes  to the current graph,
        needs to know all node actually in the local graph in order to send edges to the client.
        POST { request : {
                    graph : gid,
                    nodes : [ uuid, uuid, ... ] # current local nodes
                    add   : [ uuid, uuid, ... ] # objects to add to local graph
             }
        will return a subgraphs with all connections between `nodes` and `add`
    """
    # setup
    engine = Engine("graph")
    engine.graph.setup(in_name="request", out_name="graph")

    ## Search
    def subgraph(request):
        gid = request['graph']
        to_add = set(request['add'])
        uuids  = set([ q for q in request['nodes']] + list(to_add))

        # TODO :: dont get subgraph from N 
        edge_list = graphdb.get_edge_list(gid, uuids)
        edge_list = [ e for e in edge_list if e['source'] in to_add or e['target'] in uuids ]
        
        #nodes = { uuid : graphdb.get_node(uuid) for uuid in uuids }
        nodes = { n['uuid']: n for n in graphdb.get_nodes(gid, uuids)}
        graph = to_graph(nodes, edge_list)

        return graph

    graph_search = Optionable("AdditiveEngine")
    graph_search._func = Composable(subgraph)

    from cello.graphs.transform import VtxAttr
    graph_search |= VtxAttr(color=[(45, 200, 34), ])
    graph_search |= VtxAttr(type=1)

    engine.graph.set(graph_search)

    return engine
Exemplo n.º 9
0
def expand_prox_engine(graphdb):
    """
    prox with weights and filters on UNodes and UEdges types
    
    input:  {
                nodes : [ uuid, .. ],  //more complex p0 distribution
                weights: [float, ..], //list of weight
            }
    output: {
                graph : gid,
                scores : [ (uuid_node, score ), .. ]
            }
    """
    engine = Engine("scores")
    engine.scores.setup(in_name="request", out_name="scores")

    ## Search
    def expand(query, length=3, cut=300, weightings=None):
        graph = db_graph(graphdb, query)
        gid = query.get("graph")
        nodes = query.get("nodes", [])
        expand = query.get("expand", [])

        vs = expand_subgraph(graph,
                             expand,
                             nodes,
                             cut=cut,
                             weightings=weightings)
        vs = [(graph.vs[v[0]]['uuid'], v[1]) for v in vs]
        return dict(vs)

    scores = Optionable("scores")
    scores._func = Composable(expand)
    scores.add_option("length", Numeric(vtype=int, default=3))
    scores.add_option("cut", Numeric(vtype=int, default=50, max=300))
    scores.add_option(
        "weighting",
        Text(choices=[u"0", u"1", u"weight"],
             multi=True,
             default=u"1",
             help="ponderation"))

    engine.scores.set(expand)

    return engine
Exemplo n.º 10
0
def starred_engine(graphdb):
    """ Prox engine """
    # setup
    engine = Engine("graph")
    engine.graph.setup(in_name="request", out_name="graph")

    ## Search
    def subgraph(query, limit=200, prune=False):
        """
        :param mode: 
        """
        gid = query['graph']
        uuids  = graphdb.get_starred_node_uuids(gid)

        if len(uuids) == 0 :
            
            graph = igraph.Graph(directed=True, 
                     graph_attrs={},
                     n=0,
                     vertex_attrs={},
                     edges=[],
                     edge_attrs={})

        if len(uuids) == 1 :
            #FIXME: issue #78
            mode = "prox"
            graph = expand_subgraph(graphdb, gid, uuids, limit=limit) 

        elif len(uuids) <= 5:
            mode  = "expand"
            graph = expand_subgraph(graphdb, gid, uuids, limit= limit/len(uuids) if len(uuids) else 0. )
            
        else: 
            mode  = "nodes"
            uuids = uuids[:limit]
            graph = nodes_subgraph(graphdb, gid, uuids)

        if prune :
            graph =  _prune(graph)

        return graph
        
    graph_search = Optionable("GraphSearch")
    graph_search._func = Composable(subgraph)
    graph_search.add_option("limit", Numeric( vtype=int, default=200))
    graph_search.add_option("prune", Boolean(default=True))

    from cello.graphs.transform import VtxAttr
    graph_search |= VtxAttr(color=[(45, 200, 34), ])
    graph_search |= VtxAttr(type=1)

    engine.graph.set(graph_search)

    return engine
Exemplo n.º 11
0
def search_engine(graphdb):
    # setup
    engine = Engine("search")
    engine.search.setup(in_name="request", out_name="graph")

    ## Search
    def Search(query, results_count=10, **kwargs):
        query, graph = db_graph(graphdb, query)
        gid = query['graph']

        q = kwargs.pop("q", "*")
        field = kwargs.pop("field", None)

        g = query_istex(gid, q, field, results_count)
        graph = merge(gid, graph, g, index=index, vid=vid)

        nodes = query['nodes']
        g = graph_articles(gid,
                           graph,
                           weighting=["1"],
                           all_articles=True,
                           cut=100,
                           uuids=nodes,
                           **kwargs)
        return g

    search = Optionable("IstexSearch")
    search._func = Search
    search.add_option("q", Text(default=u"clle erss"))
    search.add_option(
        "field",
        Text(choices=[
            u"*", u"istex", u"auteurs", u"refBibAuteurs", u"keywords"
        ],
             default=u"*"))
    search.add_option(
        "results_count",
        Numeric(vtype=int, min=1, default=10, help="Istex results count"))

    engine.search.set(search)
    return engine
Exemplo n.º 12
0
def expand_prox_engine(graphdb):
    """
    prox with weights and filters on UNodes and UEdges types
    
    input:  {
                nodes : [ uuid, .. ],  //more complex p0 distribution
                weights: [float, ..], //list of weight
            }
    output: {
                graph : gid,
                scores : [ (uuid_node, score ), .. ]
            }
    """
    engine = Engine("scores")
    engine.scores.setup(in_name="request", out_name="scores")

    ## Search
    def expand(query, step=3, limit=100, filter_nodes=None, filter_edges=None):
        if filter_nodes is None :
            filter_nodes = []
        if filter_edges is None:
            filter_edges = []
        gid = query.get("graph")
        pzeros = query.get("nodes")
        weights = query.get("weights", [])

        return  graphdb.proxemie( gid, pzeros, weights, filter_edges=filter_edges, filter_nodes=filter_nodes, limit=limit, n_step=step)

    scores = Optionable("scores")
    scores._func = Composable(expand)
    scores.add_option("step", Numeric( vtype=int, default=3))
    scores.add_option("limit", Numeric( vtype=int, default=50, max=100))
    scores.add_option("filter_nodes", Text( default=set([]), multi=True, uniq=True))
    scores.add_option("filter_edges", Text( default=set([]), multi=True, uniq=True))

    engine.scores.set(expand)


    return engine
Exemplo n.º 13
0
def clusters_labels_engine(graphdb):
    def _labels(query, weighting=None, count=2, **kwargs):
        query, graph = db_graph(graphdb, query)
        gid = query['graph']
        clusters = []
        for clust in query['clusters']:
            labels = []
            pz = graph.vs.select(uuid_in=clust)
            pz = [
                v.index for v in pz if v['nodetype'] == ("_%s_article" % gid)
            ]
            if len(pz):
                vs = extract(graph, pz, cut=300, weighting=weighting, length=3)
                labels = [{
                    'uuid': graph.vs[i]['uuid'],
                    'label': graph.vs[i]['properties']['label'],
                    'score': v
                } for i, v in vs
                          if graph.vs[i]['nodetype'] != ("_%s_article" % gid)
                          ][:count]
            clusters.append(labels)
        return clusters

    comp = Optionable("labels")
    comp._func = _labels
    comp.add_option(
        "weighting",
        Text(choices=[
            u"0", u"1", u"weight", u"auteurs", u"refBibAuteurs", u"keywords",
            u"categories"
        ],
             multi=True,
             default=u"1",
             help="ponderation"))
    comp.add_option("count", Numeric(vtype=int, min=1, default=2))

    engine = Engine("labels")
    engine.labels.setup(in_name="request", out_name="labels")
    engine.labels.set(comp)

    return engine
Exemplo n.º 14
0
def engine(index):
    """ Return a default engine over a lexical graph
    """
    # setup
    from reliure.engine import Engine

    engine = Engine("graph", "clustering", "labelling", "layout")
    engine.graph.setup(in_name="query", out_name="graph")
    engine.clustering.setup(in_name="graph", out_name="clusters")
    engine.labelling.setup(in_name="clusters",
                           out_name="clusters",
                           hidden=True)
    engine.layout.setup(in_name="graph", out_name="layout")

    ## Search
    def tmuse_subgraph(query, length=50):
        return tmuse.subgraph(index, query, length=length)

    graph_search = Optionable("GraphSearch")
    graph_search._func = Composable(tmuse_subgraph)
    graph_search.add_option("length", Numeric(vtype=int, default=50))

    from cello.graphs.transform import VtxAttr
    graph_search |= VtxAttr(color=[
        (45, 200, 34),
    ])
    graph_search |= VtxAttr(type=1)

    engine.graph.set(graph_search)

    ## Clustering
    from cello.graphs.transform import EdgeAttr
    from cello.clustering.common import Infomap, Walktrap
    #RMQ infomap veux un pds, donc on en ajoute un bidon
    walktrap = EdgeAttr(weight=1.) | Walktrap()
    infomap = EdgeAttr(weight=1.) | Infomap()
    engine.clustering.set(infomap, walktrap)

    ## Labelling
    from cello.clustering.labelling.model import Label
    from cello.clustering.labelling.basic import VertexAsLabel, TypeFalseLabel, normalize_score_max

    def _labelling(graph, cluster, vtx):
        score = TypeFalseLabel.scoring_prop_ofclust(graph, cluster, vtx)
        return Label(vtx["form"], score=score, role="default")

    labelling = VertexAsLabel(_labelling) | normalize_score_max
    engine.labelling.set(labelling)

    ## Layout
    from cello.layout.simple import KamadaKawaiLayout
    #from cello.layout.proxlayout import ProxLayoutRandomProj
    from cello.layout.proxlayout import ProxLayoutPCA
    from cello.layout.transform import Shaker
    from cello.layout.transform import ByConnectedComponent, normalise

    default_layout = ProxLayoutPCA(dim=3,
                                   name="ProxPca3d") | Shaker(kelastic=.9)
    default_layout = KamadaKawaiLayout(
        dim=3, name="KamadaKawaiLayout") | Shaker(kelastic=.9)

    engine.layout.set(
        ByConnectedComponent(default_layout) | normalise,
        #KamadaKawaiLayout(dim=3, name="KamadaKawai3D"),
        #ProxLayoutPCA(dim=2, name="ProxPca2d") | Shaker(kelastic=1.8),
        #KamadaKawaiLayout(dim=2, name="KamadaKawai2D")
    )
    return engine
Exemplo n.º 15
0
def explore_engine(graphdb):
    """ Prox engine """
    # setup
    engine = Engine("graph")
    engine.graph.setup(in_name="request", out_name="graph")

    ## Search
    @Composable
    def get_graph(query, **kwargs):
        return db_graph(graphdb, query)

    @Composable
    def subgraph(query,
                 cut=100,
                 weighted=True,
                 length=7,
                 mode=ALL,
                 add_loops=False,
                 **kwargs):

        graph = db_graph(graphdb, query)

        idx = {v['uuid']: v.index for v in graph.vs}
        uuids = [q for q in query.get('units', [])]
        uuids = [idx[p] for p in uuids]

        return prox_subgraph(graph,
                             uuids,
                             cut=cut,
                             weighted=weighted,
                             length=length,
                             mode=mode,
                             add_loops=add_loops,
                             **kwargs)

    from cello.graphs.transform import VtxAttr

    searchs = []
    for k, w, l, m, n in [
        (u"Search", True, 3, ALL, 100),
    ]:
        search = Optionable("GraphSearch")
        search._func = subgraph
        search.add_option("weighted", Boolean(default=w))
        search.add_option("add_loops",
                          Boolean(default=True, help="add loops on vertices"))
        search.add_option(
            "mode",
            Numeric(choices=[OUT, IN, ALL], default=m, help="edge directions"))
        search.add_option("length", Numeric(vtype=int, min=1, default=l))
        search.add_option("cut", Numeric(vtype=int, min=2, default=n))

        search |= VtxAttr(color=[
            (45, 200, 34),
        ])
        search |= VtxAttr(type=1)

        search.name = k
        searchs.append(search)

    sglobal = get_graph | ProxSubgraph()
    sglobal.name = "Global"
    sglobal.change_option_default("cut", 200)

    searchs.append(sglobal)

    engine.graph.set(*searchs)

    return engine
Exemplo n.º 16
0
def explore_engine(graphdb):
    """ Prox engine """
    # setup
    engine = Engine("graph")
    engine.graph.setup(in_name="request", out_name="graph")

    ## Search
    @Composable
    def get_graph(query, **kwargs):
        gid = query['graph']
        graph = graphdb.get_graph(gid)
        return graph

    @Composable
    def subgraph(
        query,
        cut=50,
        weighted=True,
        length=3,
        mode=ALL,
        add_loops=False,
    ):

        graph = get_graph(query)

        uuids = {v['uuid']: v.index for v in graph.vs}
        pz = [q for q in query['units']]
        pz = [uuids[p] for p in pz]

        extract = ProxExtract()
        vs = []
        for u in pz:
            s = extract(graph,
                        pzeros=[u],
                        weighted=weighted,
                        mode=mode,
                        cut=cut,
                        length=length)
            vs = pz + vs + list(s.keys())

        return graph.subgraph(vs)

    from cello.graphs.transform import VtxAttr

    searchs = []
    for k, w, l, m, n in [(u"Espaces_sémantiques", True, 3, OUT, 30),
                          (u"Espaces_sémantiques_élargis", True, 4, OUT, 50),
                          (u"Espaces_lexicaux", False, 3, OUT, 30),
                          (u"Espaces_lexicaux_élargis", False, 4, OUT, 50)]:

        search = Optionable("GraphSearch")
        search._func = subgraph
        search.add_option("weighted", Boolean(default=w))
        search.add_option("add_loops",
                          Boolean(default=True, help="add loops on vertices"))
        search.add_option(
            "mode",
            Numeric(choices=[IN, OUT, ALL], default=m, help="edge directions"))
        search.add_option("length", Numeric(vtype=int, min=1, default=l))
        search.add_option("cut", Numeric(vtype=int, min=2, default=n))

        search |= VtxAttr(color=[
            (45, 200, 34),
        ])
        search |= VtxAttr(type=1)

        search.name = k
        searchs.append(search)

    sglobal = Composable(get_graph) | ProxSubgraph()
    sglobal.name = "Global"
    #searchs.append(sglobal)

    engine.graph.set(*searchs)

    return engine
Exemplo n.º 17
0
def graph_engine(graphdb):
    # setup
    engine = Engine("graph")
    engine.graph.setup(in_name="request", out_name="graph")

    def _global(query, reset=False, all_articles=False, cut=100, **kwargs):

        gid = query['graph']
        query, graph = db_graph(graphdb, query)
        nodes = [] if reset else query['nodes']
        g = graph_articles(gid,
                           graph,
                           all_articles=all_articles,
                           cut=cut,
                           uuids=nodes,
                           **kwargs)
        return g

    comp = Optionable("Graph")
    comp._func = _global
    comp.add_option("reset", Boolean(default=False, help="reset or add"))
    comp.add_option("all_articles",
                    Boolean(default=False, help="includes all articles"))
    comp.add_option(
        "weighting",
        Text(choices=[
            u"0", u"1", u"weight", u"auteurs", u"refBibAuteurs", u"keywords",
            u"categories"
        ],
             multi=True,
             default=u"1",
             help="ponderation"))
    comp.add_option("length", Numeric(vtype=int, min=1, default=3))
    comp.add_option("cut", Numeric(vtype=int, min=2, default=100))

    def _reset_global(query, **kwargs):
        gid = query['graph']
        graph = empty_graph(gid, **kwargs)
        graphdb.graphs[gid] = graph
        g = graph_articles(gid, graph, all_articles=True, uuids=[], **kwargs)
        return g

    reset = Optionable('ResetGraph')
    reset._func = _reset_global
    reset.add_option("reset", Boolean(default=True, help=""), hidden=True)

    engine.graph.set(comp, reset)
    return engine