Exemplo n.º 1
0
    def to_gpu(self):
        '''Send the data on CPU to GPU device.
        This method only available if cuda is activated otherwise this raises `ValueError`.

        Example:
            >>> import numpy as np
            >>> import renom as rm
            >>> from renom.cuda import set_cuda_active
            >>> set_cuda_active(True)
            >>> a = rm.Variable(np.arange(4).reshape(2, 2))
            >>> a.to_gpu()  # Sending array to gpu device.
        '''
        if self._gpu:
            self._gpu.to_gpu(self)
        else:
            self._gpu = GPUValue(self)
Exemplo n.º 2
0
 def __new__(cls, arg, length, ctr):
     ary = GPUValue(shape=arg.shape)
     arg = get_gpu(arg)
     length = get_gpu(length)
     ctr = get_gpu(ctr)
     value = cls.calc_value(arg, length, ctr, ary)
     ret = super(PredCtr, cls).__new__(cls, value)
     return ret
Exemplo n.º 3
0
 def __new__(cls, arg, x, y, h, w):
     ary = GPUValue(shape=arg.shape)
     x = get_gpu(x)
     y = get_gpu(y)
     h = get_gpu(h)
     w = get_gpu(w)
     value = cls.calc_value(ary, x, y, h, w)
     ret = super(AssignPredBox, cls).__new__(cls, value)
     return ret
Exemplo n.º 4
0
    def _backward_gpu(self, context, dy, **kwargs):

        if isinstance(self.attrs._lhs, Node):
            lhs = get_gpu(self.attrs._lhs)
            rhs = get_gpu(self.attrs._rhs)

            v = get_gpu(dy) * rhs * (GPUValue.__pow__(lhs, rhs - 1))

            dxl = cu_broad_cast(lhs, v)
            self.attrs._lhs._update_diff(context, dxl, **kwargs)

        if isinstance(self.attrs._rhs, Node):
            lhs = get_gpu(self.attrs._lhs).empty_like_me()
            culoge(get_gpu(self.attrs._lhs), lhs)
            new_r_dx = get_gpu(dy) * get_gpu(self) * lhs
            self.attrs._rhs._update_diff(context, new_r_dx, **kwargs)
Exemplo n.º 5
0
class Node(np.ndarray):
    '''This is the base class of all operation function.
    Node class inherits numpy ndarray class.

    Example:
        >>> import numpy as np
        >>> import renom as rm
        >>> vx = rm.Variable(np.random.rand(3, 2))
        >>> isinstance(vx, rm.Node)
        True
    '''

    _gpu = None
    attrs = None
    _model = None
    _auto_update = False
    _no_backward = False
    _args = ()

    SHOWMARK = False

    _node_hook = None

    @classmethod
    def set_hook(cls, hook):
        cls._node_hook = hook

    def __new__(cls, value):
        ret = cls._create_node(value)
        return ret

    @classmethod
    def _run_node_hook(cls, ret):
        if cls._node_hook:
            ret = cls._node_hook.leave_create(cls, ret)
        return ret

    @classmethod
    def _create_node(cls, value):
        if isinstance(value, np.ndarray):
            ret = value.astype(precision).view(cls)
        elif renom.cuda.has_cuda() and isinstance(value, GPUValue):
            ret = super(Node, cls).__new__(
                cls, shape=value.shape, dtype=value.dtype)
            ret._gpu = value

        elif isinstance(value, Number):
            ret = np.array(value, dtype=precision).view(cls)
        else:
            raise ValueError('Invalid Node value: %r' % value)

        assert ret.dtype == precision, (
            "Type miss matched. Required is {}, actual is {}".format(
                precision().dtype, ret.dtype))

        ret.attrs = GraphAttrs()
        if renom.debug_graph.GET_ACTIVE_NODE() is not None:
            renom.debug_graph.SET_NODE_DICT(id(ret), ret)

        ret = cls._run_node_hook(ret)

        return ret

    @classmethod
    def calc_value(cls, *args, **kwargs):
        if renom.cuda.is_cuda_active():
            value = cls._oper_gpu(*args, **kwargs)
        else:
            value = cls._oper_cpu(*args, **kwargs)
        return value

    def __init__(self, *args, **kwargs):
        self.setflags(write=False)
        self._args = []
        q = collections.deque([args])
        while q:
            a = q.pop()
            if isinstance(a, Node):
                self._args.append(a)
            elif isinstance(a, list) or isinstance(a, tuple):
                q.extend(a)
            elif isinstance(a, dict):
                q.extend(a.values())
        self._args.extend(a for a in kwargs.values() if isinstance(a, Node))

        self._reduce_graph()
        return

    @property
    def auto_update(self):
        if self._auto_update:
            if self._model:
                if not self._model.auto_update:
                    return False
        return self._auto_update

    @auto_update.setter
    def auto_update(self, value):
        raise Exception()

    @property
    def prevent_update(self):
        if self._model:
            if self._model._prevent_update:
                return True
        return False

    @prevent_update.setter
    def prevent_update(self, value):
        raise Exception()

    @property
    def device_id(self):
        if self._gpu:
            return self._gpu.device_id

        if self._model:
            return self._model._device_id

        return 0

    def set_model(self, model):
        self._model = model

    def get_gpu(self):
        if not self._gpu:
            self._gpu = GPUValue(self)
        return self._gpu

    def set_gpu(self, gpu):
        self.release_gpu()
        self._gpu = gpu

    def to_cpu(self):
        '''Send the data from GPU device to CPU.'''
        if self._gpu:
            self._gpu.to_cpu(self)

    def to_gpu(self):
        '''Send the data on CPU to GPU device.
        This method only available if cuda is activated otherwise this raises `ValueError`.

        Example:
            >>> import numpy as np
            >>> import renom as rm
            >>> from renom.cuda import set_cuda_active
            >>> set_cuda_active(True)
            >>> a = rm.Variable(np.arange(4).reshape(2, 2))
            >>> a.to_gpu()  # Sending array to gpu device.
        '''
        if self._gpu:
            self._gpu.to_gpu(self)
        else:
            self._gpu = GPUValue(self)

    def copy(self):
        """Returns a copy of itself.
        If node object does not have data on gpu,
        this returns ndarray.

        Returns:
            (Node, ndarray): Copy of node object.
        """
        if self._gpu:
            return self.__class__(self._gpu.copy())
        else:
            return np.ndarray.copy(self)

    def copy_from(self, other):
        assert self.shape == other.shape
        assert self.dtype == other.dtype
        if self._gpu:
            if other._gpu:
                self._gpu.copy_from(other._gpu)
                return

        if hasattr(self, "setflags"):
            writable = self.flags.writeable
            self.setflags(write=True)

        try:
            self[...] = other
        finally:
            if hasattr(self, "setflags"):
                self.setflags(write=writable)

    def as_ndarray(self):
        '''This method returns itself as ndarray object.'''
        self.to_cpu()
        if self._gpu:
            return self._gpu.new_array()
        if isinstance(self, Number):
            return np.array(self, dtype=precision)
        else:
            if not self.flags['C_CONTIGUOUS']:
                self = np.ascontiguousarray(self)
            ret = np.ndarray(shape=self.shape, dtype=self.dtype, buffer=self)
            ret.setflags(write=True)
            return np.array(ret)

    def release_gpu(self):
        '''This method releases array data on GPU.'''
        if self._gpu:
            self._gpu = None

    def _update_diff(self, context, dy, **kwargs):
        ready = context.add(self, dy)
        if ready:
            diff = context.get(self)
            self.backward(context, diff, **kwargs)

    def _get_graph(self):
        if self.attrs:
            return self.attrs.get_attrs()
        return []

    def _has_autoupdate(self):
        '''Check if the graph to witch this node belongs need to update.'''

        for v in self._get_graph():
            if isinstance(v, Node):
                if v.auto_update:
                    return True

                if any((o is not None) for o in v._get_graph()):
                    return True

    def _reduce_graph(self):
        if self.attrs:
            if not self._has_autoupdate():
                self._no_backward = True
                self.attrs.clear()
                self._args = []
        return False

    def detach_graph(self):
        '''This method destroys computational graph.'''

        for v in self._get_graph():
            if isinstance(v, Node):
                v.detach_graph()
        if self.attrs:
            self.attrs.clear()

        self._args = []

    def backward(self, context, dy, **kwargs):
        if self._no_backward:
            return

        if renom.cuda.is_cuda_active():
            if self._gpu:
                with cuda_base.use_device(self._gpu.device_id):
                    return self._backward_gpu(context, dy, **kwargs)
            else:
                return self._backward_gpu(context, dy, **kwargs)
        else:
            return self._backward_cpu(context, dy, **kwargs)

    def __neg__(self):
        assert False

    def __pos__(self):
        return renom.core.Pos(self)

    def __abs__(self):
        assert False

    def __invert__(self):
        assert False

    def __add__(self, other):
        '''This method is defined in basic_ops.py'''
        assert False

    def __radd__(self, other):
        '''This method is defined in basic_ops.py'''
        assert False

    def __iadd__(self, other):
        '''This method is defined in basic_ops.py'''
        assert False

    def __sub__(self, other):
        '''This method is defined in basic_ops.py'''
        assert False

    def __rsub__(self, other):
        assert False

    def __isub__(self, other):
        assert False

    def __mul__(self, other):
        '''This method is defined in basic_ops.py'''
        assert False

    def __rmul__(self, other):
        assert False

    def __imul__(self, other):
        assert False

    def __div__(self, other):
        assert False

    def __rdiv__(self, other):
        assert False

    def __idiv__(self, other):
        assert False

    def __floordiv__(self, other):
        assert False

    def __rfloordiv__(self, other):
        assert False

    def __ifloordiv__(self, other):
        assert False

    def __truediv__(self, other):
        assert False

    def __rtruediv__(self, other):
        assert False

    def __itruediv__(self, other):
        assert False

    def __mod__(self, other):
        assert False

    def __rmod__(self, other):
        assert False

    def __imod__(self, other):
        assert False

    def __divmod__(self, other):
        assert False

    def __rdivmod__(self, other):
        assert False

    def __pow__(self, other):
        assert False

    def __rpow__(self, other):
        assert False

    def __ipow__(self, other):
        assert False

    def __lshift__(self, other):
        assert False

    def __rlshift__(self, other):
        assert False

    def __ilshift__(self, other):
        assert False

    def __rshift__(self, other):
        assert False

    def __rrshift__(self, other):
        assert False

    def __irshift__(self, other):
        assert False

    def __and__(self, other):
        assert False

    def __rand__(self, other):
        assert False

    def __iand__(self, other):
        assert False

    def __xor__(self, other):
        assert False

    def __rxor__(self, other):
        assert False

    def __ixor__(self, other):
        assert False

    def __or__(self, other):
        assert False

    def __ror__(self, other):
        assert False

    def __ior__(self, other):
        assert False

    def __getitem__(self, index):
        '''This method is defined in basic_ops.py'''
        assert False

    def __setitem__(self, index, value):
        if self._gpu is not None:
            self._gpu[index] = value
        else:
            np.ndarray.__setitem__(self, index, value)

    def __getslice__(self, i, j):
        assert False

    def __lt__(self, other):
        self.to_cpu()
        if hasattr(other, 'to_cpu'):
            other.to_cpu()
        return np.ndarray.__lt__(self, other)

    def __le__(self, other):
        self.to_cpu()
        if hasattr(other, 'to_cpu'):
            other.to_cpu()
        return np.ndarray.__le__(self, other)

    def __eq__(self, other):
        self.to_cpu()
        if hasattr(other, 'to_cpu'):
            other.to_cpu()
        return np.ndarray.__eq__(self, other)

    def __ne__(self, other):
        self.to_cpu()
        if hasattr(other, 'to_cpu'):
            other.to_cpu()
        return np.ndarray.__ne__(self, other)

    def __ge__(self, other):
        self.to_cpu()
        if hasattr(other, 'to_cpu'):
            other.to_cpu()
        return np.ndarray.__ge__(self, other)

    def __gt__(self, other):
        self.to_cpu()
        if hasattr(other, 'to_cpu'):
            other.to_cpu()
        return np.ndarray.__gt__(self, other)

    def __not__(self):
        self.to_cpu()
        return np.ndarray.__not__(self)

    def __str__(self):
        self.to_cpu()
        return np.ndarray.__str__(self.as_ndarray())

    def __repr__(self):
        self.to_cpu()
        return np.ndarray.__repr__(self)

    def __float__(self):
        self.to_cpu()
        return np.ndarray.__float__(self)

    def __int__(self):
        self.to_cpu()
        return np.ndarray.__int__(self)

    def __complex__(self):
        self.to_cpu()
        return np.ndarray.__complex__(self)

    def __bool__(self):
        self.to_cpu()
        return np.ndarray.__bool__(self)

    def __index__(self):
        self.to_cpu()
        return np.ndarray.__index__(self)

    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
        # move gpu values of input arrays to cpu
        new_inputs = []
        for item in inputs:
            if isinstance(item, Node):
                item.to_cpu()
                item.release_gpu()
                new_inputs.append(item.view(np.ndarray))
            else:
                new_inputs.append(item)

        # move gpu values of output arrays to cpu
        outs = kwargs.get('out', None)
        if isinstance(outs, tuple):
            new_outs = []
            for item in outs:
                if isinstance(item, Node):
                    item.to_cpu()
                    item.release_gpu()
                    new_outs.append(item.view(np.ndarray))
                else:
                    new_outs.append(item)

            kwargs['out'] = tuple(new_outs)

        elif outs is not None:
            kwargs['out'] = outs.view(np.ndarray)
            outs.to_cpu()
            outs.release_gpu()

        ret = getattr(ufunc, method)(*new_inputs, **kwargs)
        return ret

    def reshape(self, *shape):
        '''This method is defined in basic_ops.py'''
        assert False
Exemplo n.º 6
0
 def get_gpu(self):
     if not self._gpu:
         self._gpu = GPUValue(self)
     return self._gpu
Exemplo n.º 7
0
 def __new__(cls, arg, i):
     arg = get_gpu(arg)
     ary = GPUValue(shape=(arg.shape[0], 1))
     value = cls.calc_value(arg, i, ary)
     ret = super(GetIthBbox, cls).__new__(cls, value)
     return ret
Exemplo n.º 8
0
 def _oper_gpu(cls, arg, i, j):
     ary = GPUValue(shape=(arg.shape[0], ((arg.shape[1] - (i + 1)) // j) + 1))
     arg = get_gpu(arg)
     cu_get_every_nth_ary(arg, ary, i, j)
     return ary
Exemplo n.º 9
0
 def _oper_gpu(cls, arg, i):
     shape = arg.shape
     ith_ary = GPUValue(shape=(shape[1:]))
     arg = get_gpu(arg)
     cu_get_ith_ary_forward(arg, ith_ary, i)
     return ith_ary
Exemplo n.º 10
0
 def _oper_gpu(cls, arg):
     shape = arg.shape
     fg_ary = GPUValue(shape=(shape[0], shape[1], 1, shape[3], shape[4]))
     arg = get_gpu(arg)
     cu_get_fg_ary_forward(arg, fg_ary)
     return fg_ary