Exemplo n.º 1
0
def test_scheme4():
    ph = Phonon.simple_phonon(Quantity(3.33), Quantity(1), 2)
    m1 = Mol(Quantity(0), [ph])
    m2 = Mol(Quantity(0), [ph]*2)
    mlist1 = MolList([m1, m2], Quantity(17), 4)
    mlist2 = MolList([m1, m2], Quantity(17), 3)
    mpo4 = Mpo(mlist1)
    assert mpo4.is_hermitian()
    # for debugging
    f = mpo4.full_operator()
    mpo3 = Mpo(mlist2)
    assert mpo3.is_hermitian()
    # makeup two states
    mps4 = Mps()
    mps4.mol_list = mlist1
    mps4.use_dummy_qn = True
    mps4.append(np.array([1, 0]).reshape((1,2,1)))
    mps4.append(np.array([0, 1]).reshape((1,2,1)))
    mps4.append(np.array([0.707, 0.707]).reshape((1,2,1)))
    mps4.append(np.array([1, 0]).reshape((1,2,1)))
    mps4.build_empty_qn()
    e4 = mps4.expectation(mpo4)
    mps3 = Mps()
    mps3.mol_list = mlist2
    mps3.append(np.array([1, 0]).reshape((1,2,1)))
    mps3.append(np.array([1, 0]).reshape((1,2,1)))
    mps3.append(np.array([0, 1]).reshape((1,2,1)))
    mps3.append(np.array([0.707, 0.707]).reshape((1,2,1)))
    mps3.append(np.array([1, 0]).reshape((1,2,1)))
    e3 = mps3.expectation(mpo3)
    assert pytest.approx(e4) == e3
Exemplo n.º 2
0
def test_scheme4():
    ph = Phonon.simple_phonon(Quantity(3.33), Quantity(1), 2)
    m1 = Mol(Quantity(0), [ph])
    m2 = Mol(Quantity(0), [ph] * 2)
    model4 = HolsteinModel([m1, m2], Quantity(17), 4)
    model3 = HolsteinModel([m1, m2], Quantity(17), 3)
    mpo4 = Mpo(model4)
    assert mpo4.is_hermitian()
    # for debugging
    f = mpo4.full_operator()
    mpo3 = Mpo(model3)
    assert mpo3.is_hermitian()
    # makeup two states
    mps4 = Mps()
    mps4.model = model4
    mps4.append(np.array([1, 0]).reshape((1, 2, 1)))
    mps4.append(np.array([0, 0, 1]).reshape((1, -1, 1)))
    mps4.append(np.array([0.707, 0.707]).reshape((1, 2, 1)))
    mps4.append(np.array([1, 0]).reshape((1, 2, 1)))
    mps4.build_empty_qn()
    e4 = mps4.expectation(mpo4)
    mps3 = Mps()
    mps3.model = model3
    mps3.append(np.array([1, 0]).reshape((1, 2, 1)))
    mps3.append(np.array([1, 0]).reshape((1, 2, 1)))
    mps3.append(np.array([0, 1]).reshape((1, 2, 1)))
    mps3.append(np.array([0.707, 0.707]).reshape((1, 2, 1)))
    mps3.append(np.array([1, 0]).reshape((1, 2, 1)))
    e3 = mps3.expectation(mpo3)
    assert pytest.approx(e4) == e3
Exemplo n.º 3
0
def test_autocorr(scheme, mollist2):
    ph = Phonon.simple_phonon(Quantity(1), Quantity(1), 2)
    mol = Mol(Quantity(0), [ph])
    mol_list1 = MolList([mol] * 5, Quantity(1), scheme)
    if mollist2:
        mol_list = MolList2.MolList_to_MolList2(mol_list1)
    else:
        mol_list = mol_list1
    temperature = Quantity(50000, 'K')
    compress_config = CompressConfig(CompressCriteria.fixed, max_bonddim=24)
    evolve_config = EvolveConfig(EvolveMethod.tdvp_ps,
                                 adaptive=True,
                                 guess_dt=0.5,
                                 adaptive_rtol=1e-3)
    ievolve_config = EvolveConfig(EvolveMethod.tdvp_ps,
                                  adaptive=True,
                                  guess_dt=-0.1j)
    ac = TransportAutoCorr(mol_list,
                           temperature,
                           compress_config=compress_config,
                           ievolve_config=ievolve_config,
                           evolve_config=evolve_config)
    ac.evolve(nsteps=5, evolve_time=5)
    corr_real = ac.auto_corr.real
    exact_real = get_exact_autocorr(mol_list1, temperature,
                                    ac.evolve_times_array).real
    atol = 1e-2
    # direct comparison may fail because of different sign
    assert np.allclose(corr_real, exact_real, atol=atol) or np.allclose(
        corr_real, -exact_real, atol=atol)
Exemplo n.º 4
0
def test_band_limit_finite_t(
    mol_num,
    j_constant_value,
    elocalex_value,
    ph_info,
    ph_phys_dim,
    evolve_dt,
    nsteps,
    scheme,
):
    ph_list = [
        Phonon.simple_phonon(Quantity(omega, "cm^{-1}"),
                             Quantity(displacement, "a.u."), ph_phys_dim)
        for omega, displacement in ph_info
    ]
    mol_list = MolList(
        [Mol(Quantity(elocalex_value, "a.u."), ph_list)] * mol_num,
        Quantity(j_constant_value, "eV"),
        scheme=scheme,
    )
    ct1 = ChargeTransport(mol_list, stop_at_edge=False)
    ct1.evolve(evolve_dt, nsteps)
    ct2 = ChargeTransport(mol_list, temperature=low_t, stop_at_edge=False)
    ct2.evolve(evolve_dt, nsteps)
    assert ct1.is_similar(ct2)
Exemplo n.º 5
0
def test_evolve(mol_num, j_constant_value, elocalex_value, ph_info,
                ph_phys_dim, evolve_dt, nsteps):
    ph_list = [
        Phonon.simple_phonon(Quantity(omega, "cm^{-1}"),
                             Quantity(displacement, "a.u."), ph_phys_dim)
        for omega, displacement in ph_info
    ]
    mol_list = MolList(
        [Mol(Quantity(elocalex_value, "a.u."), ph_list)] * mol_num,
        Quantity(j_constant_value, "eV"),
        scheme=3,
    )
    ct1 = ChargeTransport(mol_list, stop_at_edge=False)
    half_nsteps = nsteps // 2
    ct1.evolve(evolve_dt, half_nsteps)
    ct1.evolve(evolve_dt, nsteps - half_nsteps)
    ct2 = ChargeTransport(mol_list, stop_at_edge=False)
    ct2.evolve(evolve_dt, nsteps)
    assert ct1.is_similar(ct2)
    assert_iterable_equal(ct1.get_dump_dict(), ct2.get_dump_dict())

    # test dump
    ct2.dump_dir = "."
    ct2.job_name = "test"
    ct2.dump_dict()
    os.remove("test.npz")
Exemplo n.º 6
0
def test_reduced_density_matrix(
    mol_num,
    j_constant_value,
    elocalex_value,
    ph_info,
    ph_phys_dim,
    evolve_dt,
    nsteps,
    temperature,
):
    ph_list = [
        Phonon.simple_phonon(Quantity(omega, "cm^{-1}"),
                             Quantity(displacement, "a.u."), ph_phys_dim)
        for omega, displacement in ph_info
    ]
    mol_list = MolList([Mol(Quantity(elocalex_value, "a.u."), ph_list)] *
                       mol_num,
                       Quantity(j_constant_value, "eV"),
                       scheme=3)
    ct = ChargeTransport(mol_list,
                         temperature=Quantity(temperature, "K"),
                         stop_at_edge=False,
                         rdm=True)
    ct.evolve(evolve_dt, nsteps)
    for rdm, e in zip(ct.reduced_density_matrices, ct.e_occupations_array):
        # best we can do?
        assert np.allclose(np.diag(rdm), e)
Exemplo n.º 7
0
def custom_mol_list(
    custom_j_matrix=None,
    n_phys_dim=None,
    nqboson=None,
    qbtrunc=None,
    force3rd=None,
    dis=None,
    hartrees=None,
    nmols=3,
) -> MolList:
    if custom_j_matrix is None:
        custom_j_matrix = _j_matrix
    if n_phys_dim is None:
        n_phys_dim = ph_phys_dim
    if nqboson is None:
        nqboson = [1, 1]
    if qbtrunc is None:
        qbtrunc = [0.0, 0.0]
    if force3rd is None:
        force3rd = [None, None]
    if dis is None:
        dis = displacement_quantities
    if hartrees is None:
        hartrees = [False, False]
    displacement = [[Quantity(0), dis[0]], [Quantity(0), dis[1]]]
    ph_list = [
        Phonon(*args) for args in zip(omega, displacement, n_phys_dim,
                                      force3rd, nqboson, qbtrunc, hartrees)
    ]
    return MolList([Mol(elocalex, ph_list, dipole_abs)] * nmols,
                   custom_j_matrix)
Exemplo n.º 8
0
def test_zt_init_state():
    ph = Phonon.simple_phonon(Quantity(1), Quantity(1), 10)
    mol_list = MolList([Mol(Quantity(0), [ph])], Quantity(0), scheme=3)
    mpo = Mpo(mol_list)
    mps = Mps.random(mol_list, 1, 10)
    optimize_mps(mps, mpo)
    ct = ChargeTransport(mol_list)
    assert mps.angle(ct.latest_mps) == pytest.approx(1)
Exemplo n.º 9
0
def test_bogoliubov():
    # REF: JCP, 2016, 145, 224101
    evolve_config = EvolveConfig(EvolveMethod.tdvp_ps)
    # evolve_config = EvolveConfig()
    omega = 1
    D = 1
    nlevel = 10
    T = Quantity(1)
    ph1 = Phonon.simple_phonon(Quantity(omega), Quantity(D), nlevel)
    mol1 = Mol(Quantity(0), [ph1])
    mlist = MolList([mol1] * 2, Quantity(1), scheme=4)
    mpdm1 = MpDm.max_entangled_gs(mlist)
    mpdm1.evolve_config = evolve_config
    mpo1 = Mpo(mlist)
    tp = ThermalProp(mpdm1, mpo1, exact=True)
    tp.evolve(nsteps=20, evolve_time=T.to_beta() / 2j)
    mpdm2 = tp.latest_mps
    e1 = mpdm2.expectation(mpo1)
    mpdm3 = (Mpo.onsite(mlist, r"a^\dagger", False, {0})
             @ mpdm2).expand_bond_dimension(mpo1)
    es1 = [mpdm3.e_occupations]
    for i in range(40):
        mpdm3 = mpdm3.evolve(mpo1, 0.1)
        es1.append(mpdm3.e_occupations)

    theta = np.arctanh(np.exp(-T.to_beta() * omega / 2))
    ph2 = Phonon.simple_phonon(Quantity(omega), Quantity(D * np.cosh(theta)),
                               nlevel)
    ph3 = Phonon.simple_phonon(Quantity(-omega), Quantity(-D * np.sinh(theta)),
                               nlevel)
    mol2 = Mol(Quantity(0), [ph2, ph3])
    mlist2 = MolList([mol2] * 2, Quantity(1), scheme=4)
    mps1 = Mps.gs(mlist2, False)
    mps1.evolve_config = evolve_config
    mpo2 = Mpo(mlist2)
    e2 = mps1.expectation(mpo2)
    mps2 = (Mpo.onsite(mlist2, r"a^\dagger", False, {0})
            @ mps1).expand_bond_dimension(mpo2)
    es2 = [mps2.e_occupations]
    for i in range(20):
        mps2 = mps2.evolve(mpo2, 0.2)
        es2.append(mps2.e_occupations)
    assert np.allclose(es1[::2], es2, atol=5e-3)
Exemplo n.º 10
0
def get_mol():
    nphonons = 5
    ph_levels = 2

    delta = 1
    epsilon = 1

    ph_list = [Phonon.simple_phonon(Quantity(1), Quantity(1), ph_levels)
               ] * nphonons
    m = Mol(Quantity(epsilon), ph_list, tunnel=Quantity(-delta))
    return m
Exemplo n.º 11
0
def test_sdf():
    alpha = 0.05
    omega_c = Quantity(5)
    sdf = SpectralDensityFunction(alpha, omega_c)
    omega_list, displacement_list = sdf.trapz(200, 0.0, 50)

    ph_list = [Phonon.simplest_phonon(o, d) for o,d in zip(omega_list, displacement_list)]
    mol = Mol(Quantity(0), ph_list, tunnel=Quantity(1))
    mol_reor = mol.reorganization_energy

    assert mol_reor == pytest.approx(alpha * omega_c.as_au() / 2, abs=0.005)
Exemplo n.º 12
0
def test_ft_init_state():
    ph = Phonon.simple_phonon(Quantity(1), Quantity(1), 10)
    mol_list = MolList([Mol(Quantity(0), [ph])], Quantity(0), scheme=3)
    temperature = Quantity(0.1)
    mpo = Mpo(mol_list)
    init_mpdm = MpDm.max_entangled_ex(mol_list)
    tp = ThermalProp(init_mpdm, mpo, space="EX", exact=True)
    tp.evolve(nsteps=20, evolve_time=temperature.to_beta() / 2j)
    ct = ChargeTransport(mol_list, temperature=temperature)
    tp_mpdm = MpDmFull.from_mpdm(tp.latest_mps)
    ct_mpdm = MpDmFull.from_mpdm(ct.latest_mps)
    assert tp_mpdm.angle(ct_mpdm) == pytest.approx(1)
Exemplo n.º 13
0
def test_offset(scheme):
    ph = Phonon.simple_phonon(Quantity(3.33), Quantity(1), 2)
    m = Mol(Quantity(0), [ph] * 2)
    mlist = MolList([m] * 2, Quantity(17), scheme=scheme)
    mpo1 = Mpo(mlist)
    assert mpo1.is_hermitian()
    f1 = mpo1.full_operator()
    evals1, _ = np.linalg.eigh(f1.asnumpy())
    offset = Quantity(0.123)
    mpo2 = Mpo(mlist, offset=offset)
    f2 = mpo2.full_operator()
    evals2, _ = np.linalg.eigh(f2.asnumpy())
    assert np.allclose(evals1 - offset.as_au(), evals2)
Exemplo n.º 14
0
def param2mollist(alpha: float, raw_delta: Quantity, omega_c: Quantity,
                  renormalization_p: float, n_phonons: int):
    sdf = SpectralDensityFunction(alpha, omega_c)
    delta, max_omega = sdf.adiabatic_renormalization(raw_delta,
                                                     renormalization_p)
    omega_list, displacement_list = sdf.trapz(n_phonons, 0.0,
                                              max_omega.as_au())

    ph_list = [
        Phonon.simplest_phonon(o, d)
        for o, d in zip(omega_list, displacement_list)
    ]
    mol = Mol(Quantity(0), ph_list, tunnel=delta)
    return MolList([mol], None)
Exemplo n.º 15
0
def test_similar(mol_num, j_constant_value, elocalex_value, ph_info,
                 ph_phys_dim, evolve_dt, nsteps):
    ph_list = [
        Phonon.simple_phonon(Quantity(omega, "cm^{-1}"),
                             Quantity(displacement, "a.u."), ph_phys_dim)
        for omega, displacement in ph_info
    ]
    mol_list = MolList([Mol(Quantity(elocalex_value, "a.u."), ph_list)] *
                       mol_num,
                       Quantity(j_constant_value, "eV"),
                       scheme=3)
    ct1 = ChargeTransport(mol_list)
    ct1.evolve(evolve_dt, nsteps)
    ct2 = ChargeTransport(mol_list)
    ct2.evolve(evolve_dt + 1e-5, nsteps)
    assert ct1.is_similar(ct2)
Exemplo n.º 16
0
def test_autocorr(insteps, atol):
    ph = Phonon.simple_phonon(Quantity(1), Quantity(1), 2)
    mol = Mol(Quantity(0), [ph])
    mol_list = MolList([mol] * 5, Quantity(1), 3)
    temperature = Quantity(50000, 'K')
    compress_config = CompressConfig(threshold=1e-3)
    ac = TransportAutoCorr(mol_list,
                           temperature,
                           insteps,
                           compress_config=compress_config)
    ac.evolve(0.2, 50)
    corr_real = ac.auto_corr.real
    exact_real = get_exact_autocorr(mol_list, temperature,
                                    ac.evolve_times_array).real
    # direct comparison may fail because of different sign
    assert np.allclose(corr_real, exact_real, atol=atol) or np.allclose(
        corr_real, -exact_real, atol=atol)
Exemplo n.º 17
0
def custom_model(
    custom_j_matrix=None,
    n_phys_dim=None,
    dis=None,
    nmols=3,
) -> HolsteinModel:
    if custom_j_matrix is None:
        custom_j_matrix = _j_matrix
    if n_phys_dim is None:
        n_phys_dim = ph_phys_dim
    if dis is None:
        dis = displacement_quantities
    displacement = [[Quantity(0), dis[0]], [Quantity(0), dis[1]]]
    ph_list = [Phonon(*args) for args in zip(omega, displacement, n_phys_dim)]
    return HolsteinModel(
        [Mol(elocalex, ph_list, dipole_abs)] * nmols,
        custom_j_matrix,
    )
Exemplo n.º 18
0
def test_compress_add(mol_num, j_constant_value, elocalex_value, ph_info,
                      ph_phys_dim, evolve_dt, nsteps):
    ph_list = [
        Phonon.simple_phonon(Quantity(omega, "cm^{-1}"),
                             Quantity(displacement, "a.u."), ph_phys_dim)
        for omega, displacement in ph_info
    ]
    mol_list = MolList([Mol(Quantity(elocalex_value, "a.u."), ph_list)] *
                       mol_num,
                       Quantity(j_constant_value, "eV"),
                       scheme=3)
    ct1 = ChargeTransport(mol_list, temperature=Quantity(298, "K"))
    ct1.reduced_density_matrices = None
    ct1.evolve(evolve_dt, nsteps)
    ct2 = ChargeTransport(mol_list, temperature=Quantity(298, "K"))
    ct2.reduced_density_matrices = None
    ct2.latest_mps.compress_add = True
    ct2.evolve(evolve_dt, nsteps)
    assert ct1.is_similar(ct2, rtol=1e-2)
Exemplo n.º 19
0
def test_scheme4_finite_t(mol_num, j_constant_value, elocalex_value, ph_info,
                          ph_phys_dim, evolve_dt, nsteps):
    temperature = Quantity(1, "a.u.")
    ph_list = [
        Phonon.simple_phonon(Quantity(omega, "cm^{-1}"),
                             Quantity(displacement, "a.u."), ph_phys_dim)
        for omega, displacement in ph_info
    ]
    mol_list = MolList([Mol(Quantity(elocalex_value, "a.u."), ph_list)] *
                       mol_num, Quantity(j_constant_value, "eV"))
    ct1 = ChargeTransport(mol_list.switch_scheme(3),
                          temperature=temperature,
                          stop_at_edge=False)
    ct1.evolve(evolve_dt, nsteps)
    ct2 = ChargeTransport(mol_list.switch_scheme(4),
                          temperature=temperature,
                          stop_at_edge=False)
    ct2.evolve(evolve_dt, nsteps)
    assert ct1.is_similar(ct2, rtol=1e-2)
Exemplo n.º 20
0
def test_mpdm_full(nmols, phonon_freq):
    ph = Phonon.simple_phonon(Quantity(phonon_freq), Quantity(1), 2)
    m = Mol(Quantity(0), [ph])
    mol_list = MolList([m] * nmols, Quantity(1))

    gs_dm = MpDm.max_entangled_gs(mol_list)
    beta = Quantity(1000, "K").to_beta()
    tp = ThermalProp(gs_dm, Mpo(mol_list), exact=True, space="GS")
    tp.evolve(None, 50, beta / 1j)
    gs_dm = tp.latest_mps
    assert np.allclose(gs_dm.e_occupations, [0] * nmols)
    e_gs_dm = Mpo.onsite(mol_list, r"a^\dagger",
                         mol_idx_set={0}).apply(gs_dm, canonicalise=True)
    assert np.allclose(e_gs_dm.e_occupations, [1] + [0] * (nmols - 1))

    mpdm_full = MpDmFull.from_mpdm(e_gs_dm)
    assert np.allclose(mpdm_full.e_occupations, e_gs_dm.e_occupations)
    assert np.allclose(mpdm_full.ph_occupations,
                       e_gs_dm.ph_occupations,
                       rtol=1e-3)
Exemplo n.º 21
0
def test_2site():
    ph = Phonon.simple_phonon(Quantity(1), Quantity(1), 2)
    m = Mol(Quantity(0), [ph])
    mol_list = MolList([m] * 2, Quantity(1), scheme=3)
    gs_mp = Mpo.onsite(mol_list, opera=r"a^\dagger", mol_idx_set={0}).apply(Mps.gs(mol_list, max_entangled=False))
    mpdm = MpDm.from_mps(gs_mp)
    mpdm_full = MpDmFull.from_mpdm(mpdm)
    mpdm_full.compress_config = CompressConfig(threshold=1e-4)
    liouville = SuperLiouville(Mpo(mol_list), dissipation=1)
    ph_occupations_array = []
    energies = []
    for i in range(51):
        logger.info(mpdm_full)
        logger.info(mpdm_full.ph_occupations)
        ph_occupations_array.append(mpdm_full.ph_occupations)
        logger.info(mpdm_full.expectation(liouville))
        energies.append(mpdm_full.expectation(liouville))
        mpdm_full = mpdm_full.evolve(liouville, 0.4)
    ph_occupations_array = np.array(ph_occupations_array)
    assert energies[-1] == pytest.approx(-0.340162, rel=1e-2)
    assert np.allclose(ph_occupations_array[-1], [0.0930588, 0.099115], rtol=1e-2)
Exemplo n.º 22
0
def construct_model(nmols, dmrg_nphs, hartree_nphs) -> HolsteinModel:
    assert dmrg_nphs + hartree_nphs == 10
    elocalex = Quantity(2.13 / constant.au2ev)
    dipole_abs = 1.0

    # cm^-1
    omega_value = (np.array([
        206.0, 211.0, 540.0, 552.0, 751.0, 1325.0, 1371.0, 1469.0, 1570.0,
        1628.0
    ]) * constant.cm2au)
    S_value = np.array(
        [0.197, 0.215, 0.019, 0.037, 0.033, 0.010, 0.208, 0.042, 0.083, 0.039])

    # sort from large to small
    gw = np.sqrt(S_value) * omega_value
    idx = np.argsort(gw)[::-1]
    omega_value = omega_value[idx]
    S_value = S_value[idx]

    omega = [[Quantity(x), Quantity(x)] for x in omega_value]
    D_value = np.sqrt(S_value) / np.sqrt(omega_value / 2.0)
    displacement = [[Quantity(0), Quantity(x)] for x in D_value]

    ph_phys_dim = [5] * 10

    # print(dmrg_nphs, hartree_nphs)
    is_hartree = [False] * dmrg_nphs + [True] * hartree_nphs
    ph_list = [
        Phonon(*args[:3], hartree=args[3])
        for args in zip(omega, displacement, ph_phys_dim, is_hartree)
    ]

    model = HolsteinModel(
        [Mol(elocalex, ph_list, dipole_abs)] * nmols,
        Quantity(500, "cm-1"),
    )

    return model
Exemplo n.º 23
0
def test_reduced_density_matrix(
    mol_num,
    j_constant_value,
    elocalex_value,
    ph_info,
    ph_phys_dim,
    evolve_dt,
    nsteps,
    temperature,
):
    ph_list = [
        Phonon.simple_phonon(Quantity(omega, "cm^{-1}"),
                             Quantity(displacement, "a.u."), ph_phys_dim)
        for omega, displacement in ph_info
    ]
    mol_list3 = MolList(
        [Mol(Quantity(elocalex_value, "a.u."), ph_list)] * mol_num,
        Quantity(j_constant_value, "eV"),
        scheme=3,
    )

    ct3 = ChargeTransport(mol_list3,
                          temperature=Quantity(temperature, "K"),
                          stop_at_edge=False,
                          rdm=True)
    ct3.evolve(evolve_dt, nsteps)

    mol_list4 = mol_list3.switch_scheme(4)
    ct4 = ChargeTransport(mol_list4,
                          temperature=Quantity(temperature, "K"),
                          stop_at_edge=False,
                          rdm=True)
    ct4.evolve(evolve_dt, nsteps)
    for rdm3, rdm4, e in zip(ct3.reduced_density_matrices,
                             ct4.reduced_density_matrices,
                             ct3.e_occupations_array):
        assert np.allclose(rdm3, rdm4, atol=1e-3)
        assert np.allclose(np.diag(rdm3), e)
Exemplo n.º 24
0
def test_holstein_kubo(scheme):
    ph = Phonon.simple_phonon(Quantity(1), Quantity(1), 2)
    mol = Mol(Quantity(0), [ph])
    model = HolsteinModel([mol] * 5, Quantity(1), scheme)
    temperature = Quantity(50000, 'K')
    compress_config = CompressConfig(CompressCriteria.fixed, max_bonddim=24)
    evolve_config = EvolveConfig(EvolveMethod.tdvp_ps,
                                 adaptive=True,
                                 guess_dt=0.5,
                                 adaptive_rtol=1e-3)
    ievolve_config = EvolveConfig(EvolveMethod.tdvp_ps,
                                  adaptive=True,
                                  guess_dt=-0.1j)
    kubo = TransportKubo(model,
                         temperature,
                         compress_config=compress_config,
                         ievolve_config=ievolve_config,
                         evolve_config=evolve_config)
    kubo.evolve(nsteps=5, evolve_time=5)
    qutip_res = get_qutip_holstein_kubo(model, temperature,
                                        kubo.evolve_times_array)
    rtol = 5e-2
    assert np.allclose(kubo.auto_corr, qutip_res, rtol=rtol)
Exemplo n.º 25
0
def test_1mol_ZTabs():
    log.init_log(logging.WARNING)
    nmols = 1

    mol_list = MolList(
        [Mol(elocalex, hartree_ph_list, dipole_abs) for _ in range(nmols)],
        np.zeros([1, 1]),
    )

    E_offset = -mol_list[0].elocalex - mol_list[0].hartree_e0

    ls = tdh.LinearSpectra("abs",
                           mol_list,
                           E_offset=E_offset,
                           prop_method="unitary")

    nsteps = 1000 - 1
    dt = 30.0
    ls.evolve(dt, nsteps)

    with open(os.path.join(cur_dir, "1mol_ZTabs.npy"), "rb") as f:
        mol1_ZTabs_std = np.load(f)

    assert np.allclose(ls.autocorr, mol1_ZTabs_std)
Exemplo n.º 26
0
    omegas_au = omegas_cm * cm2au
    hr_factors = np.interp(omegas_cm, sdf_values[:, 0], sdf_values[:, 1])

    hr_factors *= TOTAL_HR / hr_factors.sum()

    lams = hr_factors * omegas_au
    phonons = [
        Phonon.simplest_phonon(Quantity(o), Quantity(l), lam=True)
        for o, l in zip(omegas_au, lams)
    ]

    j_matrix_au = j_matrix_cm * cm2au

    mlist = []
    for j in np.diag(j_matrix_au):
        m = Mol(Quantity(j), phonons)
        mlist.append(m)

    # starts from 1
    mol_arangement = np.array([7, 5, 3, 1, 2, 4, 6]) - 1
    mol_list = MolList(list(np.array(mlist)[mol_arangement]),
                       j_matrix_au[mol_arangement][:, mol_arangement])

    evolve_dt = 40
    evolve_config = EvolveConfig(evolve_dt=evolve_dt)
    compress_config = CompressConfig(CompressCriteria.fixed, max_bonddim=16)
    ct = ChargeTransport(mol_list,
                         evolve_config=evolve_config,
                         compress_config=compress_config)
    ct.dump_dir = "./fmo"
    ct.job_name = 'hybrid'
Exemplo n.º 27
0
    f"lambda:{lambda_value*constant.au2ev}ev,{lambda_value*constant.au2cm}cm^-1"
)
logger.info(f"J:{j_value*constant.au2ev}ev, {j_value*constant.au2cm}cm^-1")

j_matrix = np.diag(np.ones(nmols - 1) * j_value, k=-1)
j_matrix += j_matrix.T

ph_phys_dim = 5

omega = [Quantity(omega_value), Quantity(omega_value)]
D = [Quantity(0.), Quantity(D_value)]

ph = Phonon(omega, D, ph_phys_dim)

model = HolsteinModel(
    [Mol(Quantity(elocalex), [ph], dipole_abs)] * nmols,
    j_matrix,
)

# periodic nearest-neighbour interaction
mpo = Mpo(model)
periodic = Mpo.intersite(model, {
    0: r"a^\dagger",
    nmols - 1: "a"
}, {}, Quantity(j_value))
mpo = mpo.add(periodic).add(periodic.conj_trans())


@pytest.mark.parametrize("periodic", (True, False))
def test_thermal_equilibrium(periodic):
Exemplo n.º 28
0
logger.info(f"g:{g_value}") 
logger.info(f"lambda:{lambda_value*constant.au2ev}ev,{lambda_value*constant.au2cm}cm^-1") 
logger.info(f"J:{j_value*constant.au2ev}ev, {j_value*constant.au2cm}cm^-1")

j_matrix = np.diag(np.ones(nmols-1)*j_value,k=-1)
j_matrix += j_matrix.T

ph_phys_dim = 5

omega = [Quantity(omega_value),Quantity(omega_value)]
D = [Quantity(0.),Quantity(D_value)]

ph = Phonon(omega, D, ph_phys_dim)

mol_list = MolList([Mol(Quantity(elocalex), [ph], dipole_abs)] * nmols,
        j_matrix, scheme=3)

# periodic nearest-neighbour interaction
mpo = Mpo(mol_list)
periodic = Mpo.intersite(mol_list, {0: r"a^\dagger", nmols - 1: "a"}, {},
                         Quantity(j_value))
mpo = mpo.add(periodic).add(periodic.conj_trans())


@pytest.mark.parametrize("periodic",(True, False))
def test_thermal_equilibrium(periodic):

    if periodic:
        # define properties
        # periodic case
Exemplo n.º 29
0
# -*- coding: utf-8 -*-

import numpy as np

from renormalizer.model import Phonon, Mol, HolsteinModel
from renormalizer.utils import Quantity
from renormalizer.transport import EDGE_THRESHOLD

mol_num = 13
ph_list = [
    Phonon.simple_phonon(Quantity(omega, "cm^{-1}"), Quantity(displacement, "a.u."), 4)
    for omega, displacement in [[1e-10, 1e-10]]
]
j_constant = Quantity(0.8, "eV")
band_limit_model = HolsteinModel([Mol(Quantity(0), ph_list)] * mol_num, j_constant, 3)

# the temperature should be compatible with the low vibration frequency in TestBandLimitFiniteT
# otherwise underflow happens in exact propagator
low_t = Quantity(1e-7, "K")


def get_analytical_r_square(time_series: np.ndarray):
    return 2 * (j_constant.as_au()) ** 2 * time_series ** 2


def assert_band_limit(ct, rtol):
    analytical_r_square = get_analytical_r_square(ct.evolve_times_array)
    # has evolved to the edge but not too large
    assert EDGE_THRESHOLD < ct.latest_mps.e_occupations[0] < 0.1
    # value OK
    assert np.allclose(analytical_r_square, ct.r_square_array, rtol=rtol)
Exemplo n.º 30
0
# -*- coding: utf-8 -*-
import numpy as np

from renormalizer.mps import Mpo
from renormalizer.model import Phonon, Mol, MolList
from renormalizer.utils import Quantity
from renormalizer.utils.qutip_utils import get_clist, get_blist, get_hamiltonian, get_gs

OMEGA = 1
DISPLACEMENT = 1
N_LEVELS = 2
N_SITES = 3
J = 1

ph = Phonon.simple_phonon(Quantity(OMEGA), Quantity(DISPLACEMENT), N_LEVELS)
mol = Mol(Quantity(0), [ph])
mol_list = MolList([mol] * N_SITES, Quantity(J), 3)

qutip_clist = get_clist(N_SITES, N_LEVELS)
qutip_blist = get_blist(N_SITES, N_LEVELS)

G = np.sqrt(DISPLACEMENT**2 * OMEGA / 2)
qutip_h = get_hamiltonian(N_SITES, J, OMEGA, G, qutip_clist, qutip_blist)

qutip_gs = get_gs(N_SITES, N_LEVELS)