def test_mutated_tree(self):
        for _ in range(100):
            tree1 = pt_create.apply(random.randint(10, 35))
            tree2 = copy.deepcopy(tree1)
            sub1, sub2 = pt_mutate.change_node_operator(tree2, None)
            com_res = pt_compare.apply(tree1, tree2)
            self.assertEqual(str(sub1), str(com_res.subtree1))
            self.assertEqual(str(sub2), str(com_res.subtree2))

            tree2 = copy.deepcopy(tree1)
            sub1, sub2 = pt_mutate.add_new_node(tree2, None)
            com_res = pt_compare.apply(tree1, tree2)
            if sub1.operator == Operator.LOOP and sub1.children[
                    1].operator is not None:
                self.assertEqual(str(sub1.children[1]), str(com_res.subtree1))
                self.assertEqual(str(sub2.children[1]), str(com_res.subtree2))
            else:
                self.assertEqual(str(sub1), str(com_res.subtree1))
                self.assertEqual(str(sub2), str(com_res.subtree2))

            tree2 = copy.deepcopy(tree1)
            sub1, sub2 = pt_mutate.remove_node(tree2, None)
            com_res = pt_compare.apply(tree1, tree2)
            if (len(sub1.children) == 2 and
                (sub1.parent is None or
                 (sub2.operator is not None and
                  (sub1.parent is not None
                   and sub2.operator != sub1.parent.operator)) or sub2.operator
                 == Operator.LOOP)) or (len(sub1.children) > 2):
                self.assertEqual(str(sub1), str(com_res.subtree1))
                self.assertEqual(str(sub2), str(com_res.subtree2))
            else:
                self.assertEqual(str(sub1.parent), str(com_res.subtree1))
                self.assertEqual(str(sub2.parent), str(com_res.subtree2))
Exemplo n.º 2
0
def operator_analyse():
    from repair_alignment.process_tree.operation import pt_compare
    from pm4py.objects.process_tree.pt_operator import Operator
    opt, labels = [0, 0, 0, 0], ["Xor", "Sequence", "Parallel", "Loop"]
    for i in [(11, 15), (16, 18), (19, 21), (22, 24)]:
        sn = str(i[0]) + "-" + str(i[1])
        data = pd.read_excel(PATH + "MProcessTree.xlsx", sheet_name=sn, header=0)
        grade = pd.read_excel(PATH + "iar.xlsx", sheet_name=sn, header=0)['grade'].tolist()
        trees = data['tree']
        m_trees = data['m_tree']
        for index in range(len(grade)):
            com_res = pt_compare.apply(pt_utils.parse(trees[index]), pt_utils.parse(m_trees[index]))
            if grade[index] != 1 and com_res.subtree1.parent is not None:
                if com_res.subtree1.parent.operator == Operator.XOR:
                    opt[0] += 1
                if com_res.subtree1.parent.operator == Operator.SEQUENCE:
                    opt[1] += 1
                if com_res.subtree1.parent.operator == Operator.PARALLEL:
                    opt[2] += 1
                if com_res.subtree1.parent.operator == Operator.LOOP:
                    opt[3] += 1
    df = pd.DataFrame({"Ratio of Operators": opt}, index=["Xor", "Sequence", "Parallel", "Loop"])
    df.plot.pie(subplots=True, colors=palette, figsize=(5, 5), autopct='%.0f%%')
    import matplotlib.pyplot as plt
    # explode = (0.1, 0)  # only "explode" the 2nd slice (i.e. 'Hogs')
    # plt.pie(opt, labels=labels, autopct='%1.01f%%', startangle=90, pattern="muted")
    plt.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
    plt.show()
    plt.savefig(PATH + "../figure/ParentOperatorAnalyse.png", dpi=300)
Exemplo n.º 3
0
def apply(tree1, tree2, log, alignments, parameters=None):
    """
    Alignment repair on tree2 based on the alignment of log on tree1

    Parameters
    -----------
        tree1
            Process Tree
        tree2
            Process Tree
        log
            EventLog
        alignments
            related alignment of log on tree1
        parameters

    Returns
    ------------
    alignments
        repaired alignments
    """
    parameters = {} if parameters is None else parameters
    parameters['COMPARE_OPTION'] = 1 if parameters.get(
        'COMPARE_OPTION') is None else parameters['COMPARE_OPTION']
    ret_tuple_as_trans_desc = False if parameters.get(PARAM_ALIGNMENT_RESULT_IS_SYNC_PROD_AWARE) is None else \
        parameters[PARAM_ALIGNMENT_RESULT_IS_SYNC_PROD_AWARE]
    # TODO: if the given alignment is not True, try-catch
    alignments = copy.deepcopy(alignments)
    com_res = pt_compare.apply(tree1, tree2, parameters['COMPARE_OPTION'])
    if com_res.value:
        return alignments
    else:
        tree1_total_number = pt_mani_utils.nodes_number(tree1)
        pt_number.apply(com_res.subtree2, 'D', tree1_total_number + 1)
        best_worst_cost = apply_pt_alignments(EventLog([Trace()]), tree2,
                                              parameters)[0]['cost']
        for i in range(len(alignments)):
            align = alignments[i]
            if align.get("repair") is None:
                scope = detect_change_scope(align['alignment'],
                                            com_res.subtree1, log[i],
                                            ret_tuple_as_trans_desc)
                if not len(scope.traces) == 0:
                    sub_aligns_before = apply_pt_alignments(
                        EventLog(scope.traces), com_res.subtree1, parameters)
                    sub_aligns_after = apply_pt_alignments(
                        EventLog(scope.traces), com_res.subtree2, parameters)
                    alignment_reassemble(align['alignment'], sub_aligns_after,
                                         scope.anchor_index, com_res.subtree1,
                                         ret_tuple_as_trans_desc)
                    recompute_cost(align, sub_aligns_before, sub_aligns_after)
                    recompute_fitness(align, log[i], best_worst_cost)
                align["repair"] = True
        for a in alignments:
            a.pop("repair") if a.get("repair") is not None else None
    return alignments
Exemplo n.º 4
0
def apply_with_lock(alignments, tree, m_tree, option=1):
    alignments = copy.deepcopy(alignments)
    com_res = pt_compare.apply(tree, m_tree, option)
    if not com_res.value:
        for align in alignments:
            if align.get("expand") is None:
                scope_expand_trace(align["alignment"], com_res.subtree1, True)
                align["expand"] = True
        for a in alignments:
            a.pop("expand") if a.get("expand") is not None else None
    return alignments
Exemplo n.º 5
0
def apply(alignments, tree, m_tree, parameters=None):
    parameters = {} if parameters is None else parameters
    parameters['COMPARE_OPTION'] = 1 if parameters.get('COMPARE_OPTION') is None else parameters['COMPARE_OPTION']
    ret_tuple_as_trans_desc = False if parameters.get(PARAM_ALIGNMENT_RESULT_IS_SYNC_PROD_AWARE) is None else \
        parameters[PARAM_ALIGNMENT_RESULT_IS_SYNC_PROD_AWARE]
    alignments = copy.deepcopy(alignments)
    com_res = pt_compare.apply(tree, m_tree, parameters['COMPARE_OPTION'])
    if not com_res.value:
        for align in alignments:
            if align.get("expand") is None:
                scope_expand_trace(align["alignment"], com_res.subtree1, ret_tuple_as_trans_desc)
                align["expand"] = True
        for a in alignments:
            a.pop("expand") if a.get("expand") is not None else None
    return alignments
Exemplo n.º 6
0
def split_real_life_data(file):
    name = file.split(".")[0]
    logs = pd.read_csv(PATH + file)["trace"].tolist()
    # log_test = random.sample(logs, len(logs) // 2)
    # pd.DataFrame(log_test, columns=["trace"]).to_csv(PATH + name + "_test.csv", index=False)
    log_tree = logs[0: len(logs)//10]
    pd.DataFrame(log_tree, columns=["trace"]).to_csv(PATH + name + "_tree.csv", index=False)
    tree = inductive_miner.apply_tree(list_to_xes(log_tree))
    m_trees = []
    print(str(tree))
    for i in range(1, 5):
        log_part = logs[i*len(logs)//10: len(logs)//10*(i+1)]
        pd.DataFrame(log_part, columns=["trace"]).to_csv(PATH + name + "_part" + str(i + 1) + ".csv", index=False)
        m_tree = inductive_miner.apply_tree(list_to_xes(log_part))
        m_trees.append(m_tree)
        print(str(tree) == str(m_tree))
        print(pt_compare.apply(tree, m_tree))
Exemplo n.º 7
0
def remove_repeat_child(node):
    """
    Remove the repeatable child, if the operator is XOR

    Parameters
    -----------
    node
        process tree
    """
    if node.operator == Operator.XOR:
        children = list()
        for i in range(len(node.children) - 1, -1, -1):
            for child in children:
                com_res = pt_compare.apply(node.children[i], child)
                if not com_res.value:
                    children.append(node.children[i])
                else:
                    node.children.pop(i)
Exemplo n.º 8
0
def result(file):
    name = file.split(".")[0]
    logs = pd.read_csv(PATH + file)["trace"].tolist()
    for rd in range(1):
        log = list_to_xes(random.sample(logs, len(logs)//10))
        # log = pd.read_csv("../../../data/reallife_test.csv")["trace"].tolist()
        tree_log = pd.read_csv(PATH + name + "_tree.csv")["trace"].tolist()
        tree = inductive_miner.apply_tree(list_to_xes(tree_log))
        print(ra_pt_utils.pt_depth(str(tree)))
        m_trees = []
        for i in range(4):
            m_tree_log = pd.read_csv(PATH + name + "_part" + str(i + 1) + ".csv")["trace"].tolist()
            m_tree = inductive_miner.apply_tree(list_to_xes(m_tree_log))
            print(ra_pt_utils.pt_depth(str(m_tree)))
            print(len(ra_pt_utils.parse_tree_to_a_bfs_sequence(m_tree)), "+")

            m_trees.append(m_tree)
            res_com = pt_compare.apply(tree, m_tree)
            print(len(ra_pt_utils.parse_tree_to_a_bfs_sequence(res_com.subtree1)),
                  len(ra_pt_utils.parse_tree_to_a_bfs_sequence(res_com.subtree2)))
Exemplo n.º 9
0
def apply_with_alignments(tree,
                          m_tree,
                          log,
                          alignments,
                          parameters=None,
                          option=1):
    pt_number.apply(tree, 'D')
    pt_number.apply(m_tree, 'D')
    com_res = pt_compare.apply(tree, m_tree, option)
    if com_res.value:
        return alignments, copy.deepcopy(alignments)
    else:
        mapping_t, tree_info = dict(), dict()
        tree_utils.recursively_init_tree_tables(tree, tree_info, mapping_t,
                                                [1])
        best_worst_cost = alignments_on_pt(EventLog([Trace()]), m_tree,
                                           parameters)[0]['cost']
        repairing_alignment = compute_repairing_alignments(
            com_res, log, alignments, tree_info, mapping_t, parameters,
            best_worst_cost)
    return alignments, repairing_alignment
Exemplo n.º 10
0
def run_feature(row):
    pt = pt_utils.parse(row['tree'])
    m_pt = pt_utils.parse(row['m_tree'])
    com_res = pt_compare.apply(pt, m_pt, 2)

    # depth
    depth1 = pt_mani_utils.pt_depth(str(com_res.subtree1))
    depth2 = pt_mani_utils.pt_depth(str(com_res.subtree2))
    depths = [
        depth1 / pt_mani_utils.pt_depth(row['tree']),
        depth2 / pt_mani_utils.pt_depth(row['m_tree'])
    ]
    # depths = [depth1, pt_mani_utils.pt_depth(row['tree']), depth2, pt_mani_utils.pt_depth(row['m_tree'])]

    # trace fit
    t_l = set(re.findall("[a-z]", row['tree']))
    st_l = set(re.findall("[a-z]", str(com_res.subtree1)))
    nei_l = t_l - st_l
    min_fit = 1
    for trace in row['log'].strip().split(", "):
        count = 0
        for e in list(trace):
            count = count + 1 if e in nei_l else count
        min_fit = min(min_fit, count / len(trace))

    # type of operators
    ops = [pt.operator, com_res.subtree1.operator, com_res.subtree2.operator]

    # number of operators
    num_loop = len(re.findall(r'\*', row['tree'])) - len(
        re.findall(r'\*', str(com_res.subtree1)))
    num_xor = len(re.findall(r'X', row['tree'])) - len(
        re.findall(r'X', str(com_res.subtree1)))
    num_and = len(re.findall(r'\+', row['tree'])) - len(
        re.findall(r'\+', str(com_res.subtree1)))
    num_seq = len(re.findall(r'->', row['tree'])) - len(
        re.findall(r'->', str(com_res.subtree1)))
    total = num_loop + num_xor + num_seq + num_and
    # rate = [num_loop, num_xor]
    if total == 0:
        rate = [
            0, 0, 0, 0,
            len(re.findall(r'\*', str(com_res.subtree1))),
            len(re.findall(r'\*', str(com_res.subtree2)))
        ]
    else:
        rate = [
            num_loop / total, num_xor / total, num_and / total,
            num_seq / total,
            len(re.findall(r'\*', str(com_res.subtree1))),
            len(re.findall(r'\*', str(com_res.subtree2)))
        ]
    # subtree parent loop
    st = com_res.subtree1
    num_loop, num_xor = 0, 0
    while st.parent is not None:
        if st.parent.operator == Operator.LOOP:
            num_loop += 1
        if st.parent.operator == Operator.XOR:
            num_xor += 1
        st = st.parent

    return pd.Series([min_fit] + rate + ops + depths)
Exemplo n.º 11
0
 def compare_diff_tree(s_tree1, s_tree2, option=1):
     tree1 = pt_utils.parse(s_tree1)
     tree2 = pt_utils.parse(s_tree2)
     return pt_compare.apply(tree1, tree2, option)