Exemplo n.º 1
0
    def replay_button_interaction(self):
        mouse_pos = pygame.mouse.get_pos()
        if (self.replay_button.coords[0] < mouse_pos[0] < self.replay_button.coords[0] + self.replay_button.dimensions[0] and
                self.replay_button.coords[1] < mouse_pos[1] < self.replay_button.coords[1] + self.replay_button.dimensions[1]):
            self.replay_button.button_light(self.screen, (125, -3))
            mouse_click = pygame.mouse.get_pressed()
            if mouse_click[0] == 1:
                questions = ['Sensor size', 'Replay_data path']
                input_box = InputBoxMenu(self.screen, len(questions),
                                         (self.replay_button.coords[0] + 25, self.replay_button.coords[1] + 75),
                                         questions, [int, 'path + csv'])
                input_box.help()
                inputs = input_box.ask_boxes()
                check = input_box.check_inputbox_input()
                error_message_pos = [20, 20]

                while check in input_box.errors:
                    self.display_error_message('Error ' + check, position=tuple(error_message_pos), sleep_time=0)
                    error_message_pos[1] += 40
                    inputs = input_box.ask_boxes()
                    check = input_box.check_inputbox_input()

                replay = Replay(self.screen, self.screen_width, self.screen_height,
                                activations=self.activation_cbox.isChecked(),
                                traffic=self.traffic_cbox.isChecked(),
                                sensors=self.sensors_cbox.isChecked(),
                                distance_sensor=self.distance_sensor_cbox.isChecked(),
                                sensor_size=int(inputs[0]),
                                enabled_menu=True)
                replay.replay(inputs[1], enable_trajectory=True)
                quit()
        else:
            self.replay_button.draw_button(self.screen, (125, -3))
    def __init__(self, task):
        # Hyper parameters
        self.learning_rate_actor = 1e-4
        self.learning_rate_critic = 1e-3
        self.gamma = 0.99
        self.tau = 0.001

        # Define net
        self.sess = tf.Session()
        self.task = task
        self.actor = ActorNet(self.sess, self.task.state_size, self.task.action_size, self.learning_rate_actor, \
                     self.task.action_low, self.task.action_high, self.tau)
        self.critic = CriticNet(self.sess, self.task.state_size, self.task.action_size, self.learning_rate_critic, self.tau)

        # Define noise
        self.mu = 0
        self.theta = 0.15
        self.sigma = 0.20
        self.noise = OUNoise(self.task.action_size, self.mu, self.theta, self.sigma)

        # Define memory replay
        self.buffer_size = 1000000
        self.batch_size = 64
        self.memory = Replay(self.buffer_size, self.batch_size)

        # Score
        self.best_score = -np.inf
        self.best_reward = -np.inf
Exemplo n.º 3
0
    def post(self):
        upload_files = self.get_uploads(
            'file')  # 'file' is file upload field in the form
        if not upload_files:
            self.redirect('/failed/nofile/')
            return
        blob_info = upload_files[0]
        key = blob_info.key()
        if blob_info.size > 1048576:
            blob_info.delete()
            self.redirect('/failed/sizeerror/%s' % blob_info.filename)
            return
        blob_reader = blobstore.BlobReader(key)
        magic = blob_reader.read(50)
        if magic[0:3] != "MPQ" or not "StarCraft II replay" in magic:
            blob_info.delete()
            self.redirect('/failed/typeerror/%s' % blob_info.filename)
            return

        replayid = counter_as_string('principal')
        increment('principal')

        m = md5()
        m.update(blob_reader.read(blob_info.size))
        replaymd5 = m.hexdigest()

        replay = Replay(replayid=replayid,
                        replaymd5=replaymd5,
                        blobinfo=str(key),
                        ip=self.request.remote_addr)
        replay.put()

        self.redirect('/success/%s' % replayid)
Exemplo n.º 4
0
    def post(self):
        upload_files = self.get_uploads('file')  # 'file' is file upload field in the form
	if not upload_files:
		self.redirect('/failed/nofile/')
		return
        blob_info = upload_files[0]
	key = blob_info.key()
	if blob_info.size > 1048576:
		blob_info.delete()
	        self.redirect('/failed/sizeerror/%s' % blob_info.filename)
		return
	blob_reader = blobstore.BlobReader(key)
	magic = blob_reader.read(50)
	if magic[0:3] != "MPQ" or not "StarCraft II replay" in magic:
		blob_info.delete()
	        self.redirect('/failed/typeerror/%s' % blob_info.filename)
		return


	replayid = counter_as_string('principal')
	increment('principal')

	m = md5()
	m.update(blob_reader.read(blob_info.size))
	replaymd5 = m.hexdigest()
	
	replay = Replay(replayid=replayid, replaymd5 = replaymd5, blobinfo = str(key), ip=self.request.remote_addr)
	replay.put()

        self.redirect('/success/%s' % replayid)
Exemplo n.º 5
0
    def __init__(self,
                 game,
                 model,
                 action_range,
                 field,
                 memory=None,
                 memory_size=1000,
                 nb_frames=None,
                 nb_epoch=1000,
                 batch_size=50,
                 gamma=0.9,
                 epsilon_range=[1., .01],
                 epsilon_rate=0.99,
                 reset_memory=False,
                 observe=0,
                 checkpoint=None):
        self.model = model
        self.game = game
        self.field = field
        self.memory_size = memory_size
        self.nb_frames = nb_frames
        self.nb_epoch = nb_epoch
        self.batch_size = batch_size
        self.gamma = gamma
        self.epsilon_range = epsilon_range
        self.epsilon_rate = epsilon_rate
        self.reset_memory = reset_memory
        self.observe = observe
        self.checkpoint = checkpoint
        self.action_range = action_range
        self.loss = 0
        self.score_last_games = []
        self.ma_score_list = []

        self.replay = Replay(self.field, self.memory_size, gamma=self.gamma)
Exemplo n.º 6
0
 def startReplay(self):
     self.unloadMap()
     self.replay = Replay()
     self.world = self.replay.loadWorld()
     self.world.application = self
     self.battle_controller = BattleController(self, self.world)
     self.ai = AI(self, self.world)
     self.createVisual()
     self.replay.loadCommands()
Exemplo n.º 7
0
    def __init__(self, replay_data, player_name):
        """
        Initializes an OnlineReplay instance.

        Unless you know what you're doing, don't call this method manually -
        this is intented to be called internally by OnlineReplay.from_map.
        """

        Replay.__init__(self, replay_data, player_name)
Exemplo n.º 8
0
class BattleController(object):
	"""Handles battle commands issued by the player, AI, or a script. Can also record them to a replay file for later playback."""
	def __init__(self, application, world):
		self.application = application
		self.world = world
		self.recording = False

	def startRecording(self):
		self.recording = True
		self.replay = Replay()
		self.replay.saveWorld(self.world)

	def stopRecording(self):
		if self.recording:
			self.recording = False
			self.replay.saveCommands()
			
	def executeCommand(self, command):
		if command.command == "run":
			self.run(self.world.findObjectByID(command.target))
		elif command.command == "executeAction":
			self.executeAction(command.action, self.world.findObjectByID(command.target))
		elif command.command == "endTurn":
			self.endTurn()

	def run(self, dest_tile):
		"""Move the character to the target tile, checking for interrupts and triggers."""
		if self.recording:
			self.replay.addCommand(BattleCommand("run", dest_tile.ID))
		threat = self.world.getThreateningCharacter(self.world.current_character_turn.tile)
		if threat:
			threat.opportunityAttack(self.world.current_character_turn)
		else:
			route = self.application.pather.planMove(self.world.current_character_turn, dest_tile)
			#print "---"
			#for node in route.path:
			#	print node.coords
			self.world.current_character_turn.run(route)
			if not self.world.visual and self.world.current_character_turn:
				self.world.createMovementGrid(self.world.current_character_turn)

	def executeAction(self, action, target):
		if action.AP_cost > self.world.current_character_turn.cur_AP:
			return
		if self.recording:
			self.replay.addCommand(BattleCommand("executeAction", target.ID, action))
		#print "Action score:", self.application.ai.scoreAction(action, target)
		self.application.gui.combat_log.printMessage(self.world.current_character_turn.name + " used " + action.name + " on " + target.name + ".")
		action(self.application).execute(self.world.current_character_turn, target, self.world.getTargetsInArea(self.world.current_character_turn, target, action.targeting_rules))
		if not self.world.visual and self.world.current_character_turn:
			self.world.createMovementGrid(self.world.current_character_turn)

	def endTurn(self):
		if self.recording:
			self.replay.addCommand(BattleCommand("endTurn"))
		self.world.current_character_turn.endTurn()
Exemplo n.º 9
0
 def __init__(self, config, scene):
     self.vrep_path = config.vrep_path
     self.viz = config.visualization
     self.autolaunch = config.autolaunch
     self.port = config.api_port
     self.clientID = None
     self.scene = scene
     self.dt = config.dt
     self.replay = Replay(config.max_buffer, config.batch_size)
     self.batch_size = config.batch_size
Exemplo n.º 10
0
class TestReplay(unittest.TestCase):
    def setUp(self):
        ''' Create class instance and Gym environment instance '''
        self.memory = Replay(4)
        self.env = gym.make('CartPole-v0')

    def test_burn_memory(self):
        ''' Test to check burn_memory functionality '''
        self.memory.burn_memory(self.env, 2)
        self.assertEqual(len(self.memory.store), 2)

    def test_replace(self):
        ''' Test to check replacement of old transition tuples after crossing capacity '''
        self.memory.burn_memory(self.env, 2)
        state = self.env.reset()
        for _ in range(4):
            random_action = self.env.action_space.sample()
            next_state, reward, done, _ = self.env.step(random_action)
            self.memory.add_to_memory((next_state, reward, state, done))
            if done:
                state = self.env.reset()
            else:
                state = next_state
        self.assertEqual(len(self.memory.store), self.memory.capacity)

    def test_sample(self):
        ''' Test to check sampling function of replay memory '''
        self.memory.burn_memory(self.env, 3)
        batch = self.memory.sample_from_memory(2)
        self.assertEqual(len(batch), 2)
Exemplo n.º 11
0
def read_mulligans(deck_name):
    for f in file_manager.find_deck_games(deck_name):
        if file_manager.unzip_file(f):
            replay = Replay(file_manager.replay_file)
            l = []
            lz = []
            kept, mulliganed, drawn = replay.get_cards_kept_by_player()
            for i in kept:
                l.append(database.get_card_name(i))
            print('Kept: ' + ', '.join(l))
            for i in mulliganed:
                lz.append(database.get_card_name(i))
            print('Mulliganed: ' + ', '.join(lz))
Exemplo n.º 12
0
    def __init__(self, replay_data, player_name, enabled_mods):
        """
        Initializes a LocalReplay instance.

        Unless you know what you're doing, don't call this method manually -
        this is intented to be called internally by LocalReplay.from_path.

        Args:
            List replay_data: A list of osrpasrse.ReplayEvent objects, containing
                              x, y, time_since_previous_action, and keys_pressed.
            String player_name: An identifier marking the player that did the replay. Name or user id are common.
            Integer enabled_mods: A base10 representation of the enabled mods on the replay.
        """

        Replay.__init__(self, replay_data, player_name, enabled_mods)
Exemplo n.º 13
0
    def get(self, resource):
        query = Replay.all()
        query.filter('replayid =', resource)

        results = query.fetch(1)

        if results:
            num_results = len(results)
            result = results[0]
            blob_info = blobstore.BlobInfo.get(result.blobinfo)
            original_filename = blob_info.filename
            filesize = blob_info.size
            dl_count = get_count(resource)
        else:
            num_results = 0
            original_filename = ""
            filesize = ""
            dl_count = 0

        upload_url = blobstore.create_upload_url('/upload')
        path = os.path.join(os.path.dirname(__file__), 'info.html')
        self.response.headers['Cache-Control'] = 'no-cache'
        self.response.headers['Pragma'] = 'no-cache'

        template_values = {
            'upload_url': upload_url,
            'counter': counter_as_string('principal'),
            'resource': resource,
            'num_results': num_results,
            'original_filename': original_filename,
            'filesize': filesize,
            'dl_count': dl_count,
        }
        self.response.out.write(template.render(path, template_values))
Exemplo n.º 14
0
	def get(self, resource):
		query = Replay.all()
                query.filter('replayid =', resource)

                results = query.fetch(1)

                if results:
			num_results = len(results)
                        result = results[0]
                        blob_info = blobstore.BlobInfo.get(result.blobinfo)
			original_filename = blob_info.filename
			filesize = blob_info.size
			dl_count = get_count(resource)
		else:
			num_results = 0
			original_filename = ""
			filesize = ""
			dl_count = 0

		upload_url = blobstore.create_upload_url('/upload')
		path = os.path.join(os.path.dirname(__file__), 'info.html')
		self.response.headers['Cache-Control'] = 'no-cache'
		self.response.headers['Pragma'] = 'no-cache'

		template_values = {
                        'upload_url': upload_url,
			'counter': counter_as_string('principal'),
			'resource': resource,
			'num_results': num_results,
			'original_filename': original_filename,
			'filesize': filesize,
			'dl_count': dl_count,
		}
		self.response.out.write(template.render(path, template_values))
Exemplo n.º 15
0
    def get(self, resource, extension=".SC2Replay"):
        if resource[-10:] in (".SC2Replay", ".sc2replay"):
            resource = resource[0:-10]
        query = Replay.all()
        query.filter('replayid =', resource)

        results = query.fetch(1)

        if results:
            result = results[0]
            blob_info = blobstore.BlobInfo.get(result.blobinfo)
            if blob_info:
                upload_url = blobstore.create_upload_url('/upload')
                path = os.path.join(os.path.dirname(__file__), 'download.html')
                self.response.headers['Cache-Control'] = 'no-cache'
                self.response.headers['Pragma'] = 'no-cache'

                baseurl = urlparse(self.request.url).netloc

                if "sc2share.com" in baseurl:
                    baseurl = "sc2share.com"

                template_values = {
                    'download_filename':
                    blob_info.filename.encode("utf-8"),
                    'download_url':
                    'd/%s/%s' %
                    (resource, quote(blob_info.filename.encode("utf-8"))),
                    'baseurl':
                    baseurl,
                }
                self.response.out.write(template.render(path, template_values))
                return
            else:
                reason = 'nosuchfile'
        else:
            reason = 'nosuchfile'

        upload_url = blobstore.create_upload_url('/upload')
        path = os.path.join(os.path.dirname(__file__), 'nofetch.html')
        self.response.headers['Cache-Control'] = 'no-cache'
        self.response.headers['Pragma'] = 'no-cache'

        failure_reasons = {}
        failure_reasons['pt'] = {
            'nosuchfile':
            'O arquivo pedido não existe. Pode ser que ele nunca tenha existido, pode ser que ele tenha sido apagado, e pode ser que algo catastrófico tenha acontecido. Difícil dizer o que foi.'
        }
        failure_reasons['en'] = {
            'nosuchfile':
            'The requested file does not exist. Maybe it never existed, maybe it has been deleted, maybe something catastrophic happened. In any case, we apologize.'
        }

        template_values = {
            'upload_url': upload_url,
            'errormsg': failure_reasons['en'][reason]
        }
        self.response.out.write(template.render(path, template_values))
Exemplo n.º 16
0
class Core(object):
    def __init__(self, config, scene):
        self.vrep_path = config.vrep_path
        self.viz = config.visualization
        self.autolaunch = config.autolaunch
        self.port = config.api_port
        self.clientID = None
        self.scene = scene
        self.dt = config.dt
        self.replay = Replay(config.max_buffer, config.batch_size)
        self.batch_size = config.batch_size

    def vrep_launch(self):
        if self.autolaunch:
            if self.viz:
                vrep_exec = self.vrep_path + '/vrep.sh '
                t_val = 5.0
            else:
                vrep_exec = self.vrep_path + '/vrep.sh -h '
                t_val = 1.0
            synch_mode_cmd= \
                '-gREMOTEAPISERVERSERVICE_'+str(self.port)+'_FALSE_TRUE '
            subprocess.call( \
                vrep_exec+synch_mode_cmd+self.scene+' &',shell=True)
            time.sleep(t_val)
        self.clientID = vrep.simxStart('127.0.0.1', self.port, True, True,
                                       5000, 5)

    def vrep_start(self):
        vrep.simxStartSimulation(self.clientID, vrep.simx_opmode_blocking)
        vrep.simxSynchronous(self.clientID, True)

    def vrep_reset(self):
        vrep.simxStopSimulation(self.clientID, vrep.simx_opmode_oneshot)
        time.sleep(0.1)

    def pause(self):
        vrep.simxPauseSimulation(self.clientID, vrep.simx_opmode_oneshot)

    def close(self):
        self.vrep_reset()
        while vrep.simxGetConnectionId(self.clientID) != -1:
            vrep.simxSynchronousTrigger(self.clientID)
        vrep.simxFinish(self.clientID)
        self.replay.clear()
Exemplo n.º 17
0
def get_mulligan_stats(deck_name):
    cards_kept = []
    cards_drawn = []
    kept_and_result = {}
    percentages = {}
    outof = {}
    for f in file_manager.find_deck_games(deck_name):
        if file_manager.unzip_file(f):
            replay = Replay(file_manager.replay_file)
            k, m, d = replay.get_cards_kept_by_player()
            if k != None and m != None and d != None:
                r = replay.game_won()
                cards_kept.extend(k)
                cards_drawn.extend(d)
                # print(str(len(k)+len(m)))
                if len(k) <= 2:
                # if True:
                    for card in k:
                        if not card in kept_and_result:
                            kept_and_result[card] = None
                        if kept_and_result[card] == None:
                            kept_and_result[card] = [0, 0]
                        if r == True:
                            kept_and_result[card][0] += 1
                        kept_and_result[card][1] += 1
    cards_drawn_set = list(set(cards_drawn))
    for c in cards_drawn_set:
        times_drawn = float(cards_drawn.count(c))
        times_kept = float(cards_kept.count(c))
        outof.update({c: [int(times_kept), int(times_drawn)]})
        percent = round(times_kept / times_drawn, 3)
        percentages.update({c: percent})
    for i in range(len(percentages.items())):
        card_id = percentages.keys()[i]
        # winrate = "Not defined"
        # if card_id in kept_and_result and kept_and_result[card_id][1] != 0:
        #     winrate = float(kept_and_result[card_id][0]/)
        extra_str = 'Not defined'
        if card_id in kept_and_result:
            kar_won = kept_and_result[card_id][0]
            kar_kept = kept_and_result[card_id][1]
            extra_str = str(kar_won) + "/" + str(kar_kept) + \
                " " + str(round((float(kar_won) / kar_kept) * 100)) + "%"
        print(str(database.get_card_name(card_id)) +
              ": " + str(percentages[card_id] * 100) + "% " + str(outof[card_id][0]) + "/" + str(outof[card_id][1]) + ", winrate: " + extra_str)
Exemplo n.º 18
0
 def wrapper(*args, **kwargs):
     map_id = args[0]
     user_id = args[1]
     lzma = Cacher.check_cache(map_id, user_id)
     if (lzma):
         replay_data = osrparse.parse_replay(lzma, pure_lzma=True).play_data
         return Replay(replay_data, user_id)
     else:
         return function(*args, **kwargs)
Exemplo n.º 19
0
 def wrapper(*args, **kwargs):
     cacher = args[0]
     map_id = args[1]
     user_id = args[2]
     enabled_mods = args[4]
     lzma = cacher.check_cache(map_id, user_id)
     if (lzma):
         replay_data = osrparse.parse_replay(lzma, pure_lzma=True).play_data
         return Replay(replay_data, user_id, enabled_mods)
     else:
         return function(*args, **kwargs)
Exemplo n.º 20
0
def main(_):
    pp.pprint(flags.FLAGS.__flags)
    with tf.Session() as sess:
        data_loader = Data_loader(FLAGS.embedding_file, FLAGS.embedding_size)
        q_network = Q_network(sess, FLAGS.embedding_size, FLAGS.step_size,
                              FLAGS.target_frequency, FLAGS.hidden_units,
                              FLAGS.final_units, FLAGS.greedy_ratio,
                              data_loader)
        replay = Replay(q_network, FLAGS.minibatch_size, FLAGS.replay_size)
        model = DQL(FLAGS.budget, data_loader, q_network, replay)
        model.run()
Exemplo n.º 21
0
 def __init__(self, parameters):
     # Gym environment parameters
     self.env_name = parameters.environment_name
     self.env = gym.make(self.env_name)
     self.state_dim = self.env.observation_space.shape[0]
     self.action_dim = self.env.action_space.n
     # Training parameters
     self.discount = Training_parameters.discount
     self.train_episodes = parameters.train_episodes
     self.test_episodes = Training_parameters.test_episodes
     self.test_frequency = Training_parameters.test_frequency
     self.render_decision = parameters.render_decision
     self.render_frequency = Training_parameters.render_frequency
     # Replay memory parameters
     self.memory = Replay()
     self.memory.burn_memory(self.env)
     # Q-networks parameters
     self.Q_net = Network(self.state_dim, self.action_dim, Network_parameters.Q_net_var_scope, parameters.duel)
     self.target_Q_net = Network(self.state_dim, self.action_dim, Network_parameters.target_Q_net_var_scope, parameters.duel)
     self.update_target_frequency = Training_parameters.update_target_frequency
     self.double = parameters.double
Exemplo n.º 22
0
	def get(self, resource, extension):
		query = Replay.all()
		query.filter('replayid =', resource)

		results = query.fetch(1)

		if results:
			result = results[0]
			blob_info = blobstore.BlobInfo.get(result.blobinfo)
			increment(resource)
			self.send_blob(blob_info)
			return
Exemplo n.º 23
0
    def get(self, resource, extension):
        query = Replay.all()
        query.filter('replayid =', resource)

        results = query.fetch(1)

        if results:
            result = results[0]
            blob_info = blobstore.BlobInfo.get(result.blobinfo)
            increment(resource)
            self.send_blob(blob_info)
            return
Exemplo n.º 24
0
 def replay(self, args):
     Log.log_switch = False
     Replay.switch = True
     if args.lite:
         Replay.mode = 'LITE'
         print('* MODE : LITE *')
         if args.transactionid and args.date:
             print('Please specify only one type of data for replay')
             return
         elif args.transactionid:
             Replay().replay_execute(self.parser,
                                     transaction_id=args.transactionid)
         elif args.date:
             Replay().replay_execute(self.parser,
                                     start_time=args.date[0],
                                     end_time=args.date[1])
         else:
             Replay().replay_execute(self.parser)
     else:
         print('* MODE : REPLAY *')
         if args.transactionid and args.date:
             print('Please specify only one type of data for replay')
             return
         elif args.transactionid:
             Replay().replay_execute(self.parser,
                                     transaction_id=args.transactionid)
         elif args.date:
             Replay().replay_execute(self.parser,
                                     start_time=args.date[0],
                                     end_time=args.date[1])
         else:
             Replay().replay_execute(self.parser)
Exemplo n.º 25
0
	def get(self, resource, extension=".SC2Replay"):
		if resource[-10:] in (".SC2Replay", ".sc2replay"):
			resource = resource[0:-10]
		query = Replay.all()
		query.filter('replayid =', resource)

		results = query.fetch(1)

		if results:
			result = results[0]
			blob_info = blobstore.BlobInfo.get(result.blobinfo)
			if blob_info:
				upload_url = blobstore.create_upload_url('/upload')
				path = os.path.join(os.path.dirname(__file__), 'download.html')
				self.response.headers['Cache-Control'] = 'no-cache'
				self.response.headers['Pragma'] = 'no-cache'

				baseurl = urlparse(self.request.url).netloc;

				if "sc2share.com" in baseurl:
					baseurl = "sc2share.com"

				template_values = {
					'download_filename': blob_info.filename.encode("utf-8"),
					'download_url': 'd/%s/%s' % (resource, quote(blob_info.filename.encode("utf-8"))),
					'baseurl': baseurl,
				}
				self.response.out.write(template.render(path, template_values))
				return
			else:
				reason = 'nosuchfile'
		else:
			reason = 'nosuchfile'

		upload_url = blobstore.create_upload_url('/upload')
		path = os.path.join(os.path.dirname(__file__), 'nofetch.html')
		self.response.headers['Cache-Control'] = 'no-cache'
		self.response.headers['Pragma'] = 'no-cache'

		failure_reasons = {}
		failure_reasons['pt'] = {
			'nosuchfile': 'O arquivo pedido não existe. Pode ser que ele nunca tenha existido, pode ser que ele tenha sido apagado, e pode ser que algo catastrófico tenha acontecido. Difícil dizer o que foi.'
		}
		failure_reasons['en'] = {
			'nosuchfile': 'The requested file does not exist. Maybe it never existed, maybe it has been deleted, maybe something catastrophic happened. In any case, we apologize.'
		}
		
		template_values = {
			'upload_url': upload_url,
			'errormsg': failure_reasons['en'][reason]
		}
		self.response.out.write(template.render(path, template_values))
    def __init__(
        self,
        batch_size=64,
        device='cpu',
        gamma=0.95,
        gradient_clip=0.0,
        loss_fn='L2',
    ):
        self.env = gym.make('CartPole-v0')
        self.input_size = self.env.observation_space.shape[0]
        self.num_actions = self.env.action_space.n

        self.device = device
        self.qnet = CartPolePolicy(self.input_size, self.num_actions, device)
        self.target_qnet = CartPolePolicy(self.input_size, self.num_actions,
                                          device)
        self.target_qnet.copy_params_(self.qnet)

        self.eps_sch = LinearEpsilonScheduler()

        self.optimizer = optim.Adam(self.qnet.parameters(), lr=1e-4)

        if gradient_clip > 0.0:
            for p in self.qnet.parameters():
                p.register_hook(lambda grad: torch.clamp(
                    grad, min=-gradient_clip, max=gradient_clip))

        self.schema = DataSchema(
            names=["prev_state", "action", "reward", "state", "done"],
            shapes=[(self.input_size, ), (1, ), (1, ), (self.input_size, ),
                    (1, )],
            dtypes=[np.int64, np.int64, np.float32, np.float32, np.float32],
        )

        self.replay = Replay(100000, self.schema)

        self.batch_size = batch_size
        self.gamma = gamma
        self.loss_fn = loss_fn
    def __init__(self, bin_file_path):
        """
        Args:
            bin_file_path (string): File path containing preprocessed
        """
        self.game_states = []
        self.root_dir = bin_file_path

        for root, dirs, files in os.walk(bin_file_path):
            for name in files:
                if name.split('.')[-1] != "bin":
                    continue

                with open(os.path.join(self.root_dir, name), 'rb') as f:
                    file_content = f.read()
                    _, states = Replay(file_content)

                    for state in states:
                        if state.players is None:
                            continue

                        if len(state.players) != 6:
                            continue

                        if state.state != State.Game:
                            continue

                        # add default state, team red
                        self.add_states(state, Team.Red)

                        # add state flipped about x axis, team red
                        self.add_states(
                            du.flip_state(state,
                                          x_axis_flip=True,
                                          y_axis_flip=False), Team.Red)

                        # add state flipped about y axis, team blue
                        self.add_states(
                            du.flip_state(state,
                                          x_axis_flip=False,
                                          y_axis_flip=True), Team.Blue)

                        # add state flipped about x and y axis, team blue
                        self.add_states(
                            du.flip_state(state,
                                          x_axis_flip=True,
                                          y_axis_flip=True), Team.Blue)

        self.game_states = du.filter_states_3v3(game_states=self.game_states)
Exemplo n.º 28
0
 def play_one_game(self):
     replay = Replay()
     s = self.env.reset()
     count = 0
     while True:
         conv_s = np.reshape(s, [1, 84, 84, 4])
         p_g = self.nns["good"].predict(conv_s)
         p_n = self.nns["normal"].predict(conv_s)
         p_b = self.nns["bad"].predict(conv_s)
         p = 2 * p_g["pi"][0] + p_n["pi"][0] - p_b["pi"][0]
         p += np.ones_like(self.a)
         p /= np.sum(p)
         a = np.random.choice(self.a, p=p)
         s_, r, t, _ = self.env.step(a)
         replay.add(s, a)
         replay.score += r
         s = s_
         count += 1
         if count % 10 == 0:
             print(".", end="", flush=True)
         if t:
             print()
             break
     return replay
Exemplo n.º 29
0
    def __depth_first_search(self, start_path, inter_path):
        current_path = join(start_path, inter_path)
        dirs_and_files = listdir(current_path)
        dirs = []
        files = []

        for df in dirs_and_files:
            # print(current_path)

            if is_replay(join(current_path, df)):
                files.append(df)

            if isdir(join(current_path, df)):
                if 'Replays' == df:
                    raise Exception('Replays folder is already formed')
                else:
                    dirs.append(df)

        for i in range(len(dirs)):
            inter = join(inter_path, dirs[i])
            # print('recurse', inter)
            self.__depth_first_search(start_path, inter)

        key = ''
        #finished recursive steps, now we read the discovered replays
        for i in range(len(files)):

            src_file = join(start_path, inter_path, files[i])
            original = Replay(src_file)
            keys = self.__inspector.inspect(original)

            #go through each key
            for j in range(len(keys)):
                replay = copy_replay(original)
                key = keys[j]

                #place replays in proper folders
                if key in self.__folders.keys():
                    self.__folders[key].append(replay)

                else:
                    self.__folders[key] = []

                    #series flag -1 means there are no replay with the same player names, yet ...
                    replay.series_flag = -1
                    self.__folders[key].append(replay)
Exemplo n.º 30
0
    def __init__(self, bin_file_path):
        """
        Args:
            bin_file_path (string): File path containing preprocessed
        """
        self.game_states = []
        self.root_dir = bin_file_path

        for root, dirs, files in os.walk(bin_file_path):
            for name in files:
                if name.split('.')[-1] == "bin":
                    with open(os.path.join(self.root_dir, name), 'rb') as f:
                        file_content = f.read()
                        _, states = Replay(file_content)

                        for state in states:
                            if state.players is not None and len(
                                    state.players) == 2:
                                # flip states so that opposing demonstrations are learned
                                #   and there are more states to learn from

                                # add default state, team 0
                                self.game_states.append((state, 0))

                                # add state flipped about x axis, team 0
                                self.game_states.append(
                                    (du.flip_state(state,
                                                   flip_x=True,
                                                   flip_y=False), 0))

                                # add state flipped about y axis, team 1
                                self.game_states.append(
                                    (du.flip_state(state,
                                                   flip_x=False,
                                                   flip_y=True), 1))

                                # add state flipped about x and y axis, team 1
                                self.game_states.append(
                                    (du.flip_state(state,
                                                   flip_x=True,
                                                   flip_y=True), 1))

        self.game_states = du.filter_states(game_states=self.game_states)
def main():
    xminmax = [0, 0]
    yminmax = [0, 0]
    bin_file_path = 'preprocessed'

    for root, dirs, files in os.walk(bin_file_path):
        for name in files:
            if name.split('.')[-1] == "bin":
                print(name)
                with open(os.path.join(bin_file_path, name), 'rb') as f:
                    file_content = f.read()
                    _, states = Replay(file_content)

                    for state in states:
                        if state.players is not None and len(
                                state.players) == 2:
                            xmin = state.players[0].disc.x if state.players[
                                0].disc.x < state.players[
                                    1].disc.x else state.players[1].disc.x
                            xmax = state.players[0].disc.x if state.players[
                                0].disc.x > state.players[
                                    1].disc.x else state.players[1].disc.x

                            ymin = state.players[0].disc.y if state.players[
                                0].disc.y < state.players[
                                    1].disc.y else state.players[1].disc.y
                            ymax = state.players[0].disc.y if state.players[
                                0].disc.y > state.players[
                                    1].disc.y else state.players[1].disc.y

                            xminmax[
                                0] = xmin if xmin < xminmax[0] else xminmax[0]
                            xminmax[
                                1] = xmax if xmax > xminmax[1] else xminmax[1]

                            yminmax[
                                0] = ymin if ymin < yminmax[0] else yminmax[0]
                            yminmax[
                                1] = ymax if ymax > yminmax[1] else yminmax[1]
                    print('x min max:', xminmax)
                    print('y min max:', yminmax)
                print('---------------------')
Exemplo n.º 32
0
    def __init__(self, bin_file_path):
        """
        Args:
            bin_file_path (string): File path containing preprocessed
        """
        self.game_states = []
        self.root_dir = bin_file_path

        for root, dirs, files in os.walk(bin_file_path):
            for name in files:
                if name.split('.')[-1] == "bin":
                    with open(os.path.join(self.root_dir, name), 'rb') as f:
                        file_content = f.read()
                        _, states = Replay(file_content)

                        for state in states:
                            if state.players is not None and len(
                                    state.players) == 2:
                                self.game_states.append((state, 0))
                                self.game_states.append((state, 1))
Exemplo n.º 33
0
    def _compare_two_replays(replay1, replay2):
        """
        Compares two Replays and return their average distance
        and standard deviation of distances.
        """

        # get all coordinates in numpy arrays so that they're arranged like:
        # [ x_1 x_2 ... x_n
        #   y_1 y_2 ... y_n ]
        # indexed by columns first.
        data1 = replay1.as_list_with_timestamps()
        data2 = replay2.as_list_with_timestamps()

        # interpolate
        (data1, data2) = Replay.interpolate(data1, data2)

        # remove time from each tuple
        data1 = [d[1:] for d in data1]
        data2 = [d[1:] for d in data2]

        (mu, sigma) = Comparer._compute_data_similarity(data1, data2)

        return (mu, sigma)
Exemplo n.º 34
0
    def __init__(self, basepath):
        self.recinfo = Recinfo(basepath)

        self.position = ExtractPosition(self.recinfo)
        self.epochs = behavior_epochs(self.recinfo)
        self.artifact = findartifact(self.recinfo)
        self.makePrmPrb = makePrmPrb(self.recinfo)
        self.utils = SessionUtil(self.recinfo)

        self.spikes = spikes(self.recinfo)
        self.brainstates = SleepScore(self.recinfo)
        self.swa = Hswa(self.recinfo)
        self.theta = Theta(self.recinfo)
        self.spindle = Spindle(self.recinfo)
        self.gamma = Gamma(self.recinfo)
        self.ripple = Ripple(self.recinfo)
        self.placefield = pf(self.recinfo)
        self.replay = Replay(self.recinfo)
        self.decode = DecodeBehav(self.recinfo)
        self.localsleep = LocalSleep(self.recinfo)
        self.viewdata = SessView(self.recinfo)
        self.pbe = PBE(self.recinfo)

        self.eventpsth = event_event()
Exemplo n.º 35
0
def handle_replay(node, seed, command, transfers, **kwargs):
    # Check if a valid command
    arguments = command.split(' ', 1)
    t_id = None

    try:
        t_id = arguments[1]
    except IndexError:
        return pretty_print('Invalid command - See example usage.')

    bundle = None
    t_id = t_id.strip()

    if not transfers:
        return pretty_print('Looks like you do not have any account history.')
    
    for transfer in transfers:
        id_as_string = str(transfer['short_transaction_id'])

        if id_as_string == t_id:
            bundle = transfer['bundle']
            break

    if bundle is None:
        return pretty_print(
            'Looks like there is no bundle associated with your specified short transaction id. Please try again'
        )

    pretty_print('Starting to replay your specified bundle. This might take a few second...', color='green')
    return Replay(
        node,
        seed,
        bundle,
        replay_callback=lambda message: pretty_print(message, color='blue'),
        **kwargs
    )
Exemplo n.º 36
0
def save_data(replay_paths):
    # description = "%s" % (".".join(replay_paths))

    # hash = hashlib.md5(description.encode('utf-8')).hexdigest()
    # pickle_path = os.path.join('data', "%s.pickle")
    # if os.path.exists(pickle_path):
    #     print("%s already saved" % pickle_path)
    #     return

    expand_dataset = Dataset(sections=[], labels=[])
    conquer_dataset = Dataset(sections=[], labels=[])
    buckets = Buckets(expand=expand_dataset, conquer=conquer_dataset)

    for replay_path in replay_paths:
        print("Processing replay %s with kernels %d and %d" % (replay_path, expand_kernel_size, conquer_kernel_size))
        # pickle_path = os.path.join('data/', '%s.%d.%s' % (filename, kernel_size, 'pickle'))

        print("Loading replay %s" % replay_path)
        replay = Replay(replay_path)
        replay.load()
        print(replay)
        print("Combining data ... ")
        replay.combine_data()

        first_stage_limit = replay.find_sections_count_before_first_collision()

        # Expand Data prep
        print("Padding with %d ... " % expand_kernel_size)
        replay.prepare_padded_arrays(expand_kernel_size)
        print("Generating sections for cells with surrounding")
        sections, labels = replay.get_sections_and_labels(own=False)

        print("Collect expand phase. First %d moves." % first_stage_limit)
        expand_sections, expand_labels = sections[:first_stage_limit], labels[:first_stage_limit]
        print("Rotate each section")
        expand_sections, expand_labels = rotate_all_sections(expand_sections, expand_labels)
        buckets.expand.sections.append(expand_sections)
        buckets.expand.labels.append(expand_labels)

        # Conquer Data prep
        # print("Padding with %d ... " % conquer_kernel_size)
        # replay.prepare_padded_arrays(conquer_kernel_size)
        # print("Generating sections for OWN cells with surrounding")
        # sections, labels = replay.get_sections_and_labels(own=True)
        #
        # print("Collect conquer phase. Last %d moves." % (len(sections) - first_stage_limit))
        # conquer_sections, conquer_labels = sections[first_stage_limit:], labels[first_stage_limit:]
        # print("Rotate each section")
        # conquer_sections, conquer_labels = rotate_all_sections(conquer_sections, conquer_labels)
        # buckets.conquer.sections.append(conquer_sections)
        # buckets.conquer.labels.append(conquer_labels)

    # Expand
    expand_dataset = Dataset(
        sections=np.concatenate(buckets.expand.sections, axis=0),
        labels=np.concatenate(buckets.expand.labels, axis=0)
    )

    train_data, test_data, train_labels, test_labels = train_test_split(
        expand_dataset.sections, expand_dataset.labels, train_size=.8)

    print("Equalizing test data and labels")
    # We want testing data to have equal amount of different classes
    # Otherwise accuracy can be spoiled
    test_data, test_labels = equalized_sections(test_data, test_labels)

    print("%d of expand training data, %d of expand testing data" % (len(train_data), len(test_data)))
    expand_data = {
        'train_data': train_data,
        'train_labels': train_labels,
        'test_data': test_data,
        'test_labels': test_labels,
        'kernel_size': expand_kernel_size
    }

    # Conquer
    # conquer_dataset = Dataset(
    #     sections=np.concatenate(buckets.conquer.sections, axis=0),
    #     labels=np.concatenate(buckets.conquer.labels, axis=0)
    # )
    #
    # train_data, test_data, train_labels, test_labels = train_test_split(
    #     conquer_dataset.sections, conquer_dataset.labels, train_size=.8)
    # print("Equalizing train data and labels")
    # train_data, train_labels = equalized_sections(train_data, train_labels)
    # print("Equalizing test data and labels")
    # test_data, test_labels = equalized_sections(test_data, test_labels)
    # print("%d of conquer training data, %d of conquer testing data" % (len(train_data), len(test_data)))
    # conquer_data = {
    #     'train_data': train_data,
    #     'train_labels': train_labels,
    #     'test_data': test_data,
    #     'test_labels': test_labels,
    #     'kernel_size': conquer_kernel_size
    # }
    conquer_data = None

    data = {
        'expand_data': expand_data,
        'conquer_data': conquer_data
    }

    pickle_path = 'data/data.pickle'
    with open(pickle_path, 'wb') as f:
        print("Saving to %s" % pickle_path)
        pickle.dump(data, f)
    return data
Exemplo n.º 37
0
class DQN_Agent:

    def __init__(self, parameters):
        # Gym environment parameters
        self.env_name = parameters.environment_name
        self.env = gym.make(self.env_name)
        self.state_dim = self.env.observation_space.shape[0]
        self.action_dim = self.env.action_space.n
        # Training parameters
        self.discount = Training_parameters.discount
        self.train_episodes = parameters.train_episodes
        self.test_episodes = Training_parameters.test_episodes
        self.test_frequency = Training_parameters.test_frequency
        self.render_decision = parameters.render_decision
        self.render_frequency = Training_parameters.render_frequency
        # Replay memory parameters
        self.memory = Replay()
        self.memory.burn_memory(self.env)
        # Q-networks parameters
        self.Q_net = Network(self.state_dim, self.action_dim, Network_parameters.Q_net_var_scope, parameters.duel)
        self.target_Q_net = Network(self.state_dim, self.action_dim, Network_parameters.target_Q_net_var_scope, parameters.duel)
        self.update_target_frequency = Training_parameters.update_target_frequency
        self.double = parameters.double

    def epsilon_greedy_policy(self, q_values, epsilon=0.05):
        """
        Returns action as per epsilon-greedy policy
        :param q_values: Q-values for the possible actions
        :param epsilon: Parameter to define exploratory action probability
        :return: action: Action selected by agent as per epsilon-greedy policy
        """
        if random.random() < epsilon:
            return self.env.action_space.sample()
        else:
            return self.greedy_policy(q_values)

    def greedy_policy(self, q_values):
        '''
        Returns action as per greedy policy

        Parameters:
        q_values: Q-values for the possible actions

        Output:
        Action selected by agent as per greedy policy corresponding to maximum Q-value
        '''
        return np.argmax(q_values)

    def train(self):
        performance = []
        # Setup video rendering for Gym environment
        if self.render_decision:
            f = lambda X: X % self.render_frequency == 0
            self.env.render()
            video_save_path = f'{Directories.output}Video_DQN_{self.env_name}/'
            self.env = gym.wrappers.Monitor(self.env, video_save_path, video_callable=f, force=True)
            self.env.reset()

        for episode in range(self.train_episodes):
            state = self.env.reset()
            done = False
            while not done:
                # Perform an action in environment and add to replay memory
                Q_values = self.Q_net.predict(state.reshape(-1, self.state_dim))
                # Anneal exploration probability epsilon
                epsilon = Training_parameters.inital_eps - (Training_parameters.scale_eps * (Training_parameters.inital_eps - Training_parameters.final_eps) * (episode / self.train_episodes))
                action = self.epsilon_greedy_policy(Q_values, epsilon)
                next_state, reward, done, _ = self.env.step(action)
                self.memory.add_to_memory((next_state, reward, state, action, done))

                # Sample batch from memory and train model
                batch = self.memory.sample_from_memory()
                batch_next_state, batch_reward, batch_state, batch_action, check_if_terminal = map(np.array,
                                                                                                   zip(*batch))
                check_if_not_terminal = np.invert(check_if_terminal)
                if self.double:
                    Q_next = self.Q_net.predict(batch_next_state.reshape(-1, self.state_dim))
                    next_actions = np.argmax(Q_next, axis=1)
                    next_actions_indices = np.vstack([np.arange(Network_parameters.batch_size), next_actions]).T
                    target_Q_next_all_actions = self.target_Q_net.predict(batch_next_state.reshape(-1, self.state_dim))
                    targets = batch_reward + check_if_not_terminal * self.discount *tf.gather_nd(target_Q_next_all_actions, next_actions_indices)
                else:
                    target_Q_next = self.target_Q_net.predict(batch_next_state.reshape(-1, self.state_dim))
                    targets = batch_reward + check_if_not_terminal*self.discount * np.max(target_Q_next, axis=1)
                actions_selected = np.vstack([np.arange(Network_parameters.batch_size), batch_action]).T
                self.Q_net.fit(batch_state, targets, actions_selected)

            # Update target model as per update frequency
            if episode % self.update_target_frequency == 0:
                self.Q_net.update_target_model(self.target_Q_net)

            # Test policy as per test frequency
            if episode % self.test_frequency == 0:
                test_rewards, test_std = self.test()
                print(f'After {episode} episodes, mean test reward is {test_rewards} with std of {test_std}')
                performance.append((test_rewards, test_std))
        return performance

    def test(self):
        rewards = []
        for test_episode in range(self.test_episodes):
            curr_episode_reward = 0
            state = self.env.reset()
            done = False
            while not done:
                action = self.greedy_policy(self.Q_net.predict(state.reshape(1, -1)))
                next_state, reward, done, _ = self.env.step(action)
                curr_episode_reward += reward
                if done:
                    state = self.env.reset()
                else:
                    state = next_state
            rewards.append(curr_episode_reward)
        rewards = np.array(rewards)
        return np.mean(rewards), np.std(rewards)
Exemplo n.º 38
0
def print_results(deck_name):
    for f in file_manager.find_deck_games(deck_name):
        if file_manager.unzip_file(f):
            replay = Replay(file_manager.replay_file)
            print replay.game_won()