Exemplo n.º 1
0
    def train(self, verbose=True):
        """Train the Multi-layer Perceptrons

        Parameters
        ----------
        verbose : boolean
            Print logging messages with validation accuracy if verbose is True.
        """

	####
	
	#evalutation is copy paste from Run.py ...
	evaluator = Evaluator()
	if verbose == True:
	  print "epoch-nr. & Result of the Multi-layer Perceptron recognizer (on test set):"
	
	for epoch in range(self.epochs):
	  
	  self._train_one_epoch();

	  if verbose == True:
	    print epoch
	    evaluator.printAccuracy(self.test_set, self.evaluate())
	    
        pass
Exemplo n.º 2
0
Arquivo: Run.py Projeto: yaselh/NN
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)

    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.01,
                                        epochs=10)

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nTraining the Perceptron..")
    myPerceptronClassifier.train()
    print("Done..")


    # Do the recognizer
    perceptronPred = myPerceptronClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("\nResult of the Perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
Exemplo n.º 3
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet,
                                          data.validationSet,
                                          data.testSet)
    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        epochs=10)

    # Train the classifiers
    print("=========================")
    print("Training..")
    myStupidClassifier.train()
    myPerceptronClassifier.train()

    # Do the recognizer
    stupidPred = myStupidClassifier.evaluate()
    perceptronPred = myPerceptronClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    #evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
Exemplo n.º 4
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      oneHot=False)

    myMLP = MultilayerPerceptron(data.trainingSet,
                                 data.validationSet,
                                 data.testSet,
                                 learningRate=0.005,
                                 epochs=30)
    # myMLP.fortest()
    myMLP.train()

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    MLPPred = myMLP.evaluate()
    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("\nResult of the MLP:")
    evaluator.printAccuracy(data.testSet, MLPPred)

    # Draw
    plot = PerformancePlot("MLP validation")
    plot.draw_performance_epoch(myMLP.performances, myMLP.epochs)
Exemplo n.º 5
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)

    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.01,
                                        epochs=10)

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nTraining the Perceptron..")
    myPerceptronClassifier.train()
    print("Done..")

    # Do the recognizer
    perceptronPred = myPerceptronClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("\nResult of the Perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
Exemplo n.º 6
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)
    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)
    myLogisticRegressionClassifier = LogisticRegression(data.trainingSet,
                                                        data.validationSet,
                                                        data.testSet,
                                                        learningRate=0.001,
                                                        epochs=50,
                                                        error='mse')

    # Train the classifiers
    print("=========================")
    print("Training..")

    #print("\nStupid Classifier has been training..")
    #myStupidClassifier.train()
    #print("Done..")

    #print("\nPerceptron has been training..")
    #myPerceptronClassifier.train()
    #print("Done..")

    print("\nLogistic Regression Classifier has been training..")
    myLogisticRegressionClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    #stupidPred = myStupidClassifier.evaluate()
    #perceptronPred = myPerceptronClassifier.evaluate()
    LogisticRegressionPred = myLogisticRegressionClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    #print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    #evaluator.printAccuracy(data.testSet, stupidPred)

    #print("\nResult of the Perceptron recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    #evaluator.printAccuracy(data.testSet, perceptronPred)

    print("Result of the Logistic Regression:")
    evaluator.printAccuracy(data.testSet, LogisticRegressionPred)
Exemplo n.º 7
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
#    myStupidClassifier = StupidRecognizer(data.trainingSet,
#                                          data.validationSet,
#                                          data.testSet)
    # Uncomment this to make your Perceptron evaluated
    # myPerceptronClassifier = Perceptron(data.trainingSet,
    #                                     data.validationSet,
    #                                     data.testSet,
    #                                     learningRate=0.005,
    #                                     epochs=30)

    myNeuralNetwork = LogisticRegression(data.trainingSet,
                                         data.validationSet,
                                         data.testSet)
     # Train the classifiers
    print("=========================")
    print("Training..")

    # print("\nStupid Classifier has been training..")
    # myStupidClassifier.train()
    # print("Done..")

    print("\nNeural Network training..")
    #myPerceptronClassifier.train()
    myNeuralNetwork.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()
    # Uncomment this to make your Perceptron evaluated
    # perceptronPred = myPerceptronClassifier.evaluate()
    neuralPred = myNeuralNetwork.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
#    evaluator.printComparison(data.testSet, perceptronPred)
#    Uncomment this to make your Perceptron evaluated
    # evaluator.printAccuracy(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, neuralPred)

    # evaluator.printConfusionMatrix(data.testSet, perceptronPred)
    evaluator.printConfusionMatrix(data.testSet, neuralPred)
Exemplo n.º 8
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet,
                                          data.validationSet,
                                          data.testSet)
    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)
    myLRClassifier = LogisticRegression(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    perceptronPred = myPerceptronClassifier.evaluate()
    lrPred = myLRClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
Exemplo n.º 9
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)
    # Uncomment this to make your Perceptron evaluated
    myPerceptronClassifier = Perceptron(
        data.trainingSet,
        data.validationSet,
        data.testSet,
        learningRate=1.0,  #0.005,
        epochs=1  #30
    )

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    # Uncomment this to make your Perceptron evaluated
    perceptronPred = myPerceptronClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    #evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    # Uncomment this to make your Perceptron evaluated
    evaluator.printAccuracy(data.testSet, perceptronPred)

    evaluator.printConfusionMatrix(data.testSet, perceptronPred)
    evaluator.printClassificationResult(data.testSet, perceptronPred,
                                        ['class 0', 'class 1'])  #target_names)
Exemplo n.º 10
0
def main():
    # ------------  NOTE  --------------
    # oneHot = False, as the framwork provided implements binary one-hot encoding (is it a 7 = True/False)
    # Our targets are one-of-k encoded (e.g. 1= (0,1,0,0,0,0,0,0,0)). Network predicts the exact number on the picture not just 7 = True/False
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      oneHot=False)

    myMLPClassifier = MultilayerPerceptron(
        data.trainingSet,
        data.validationSet,
        data.testSet,
        hiddenLayerSizes=[
            65, 30
        ],  # size of hidden layers, input and output layers sizes are constant
        learningRate=0.028,  # learning rate
        epochs=50)  # epochs

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nMLP has been training..")
    myMLPClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")

    print("\nResult of the MLP:")
    #evaluator.printComparison(data.testSet, lrPred)
    evaluator.printAccuracy(data.testSet, mlpPred)

    # Draw
    plot = PerformancePlot("MLP validation")
    plot.draw_performance_epoch(myMLPClassifier.performances,
                                myMLPClassifier.epochs)
Exemplo n.º 11
0
def classify_all():
    data = MNISTSeven("../data/mnist_seven.csv", 4000, 500, 500, one_hot=False)

    mlp = MultilayerPerceptron(data.training_set,
                               data.validation_set,
                               data.test_set,
                               output_task="classify_all",
                               cost='crossentropy',
                               output_activation='softmax',
                               learning_rate=0.30,
                               epochs=50)

    mlp.train()
    pred = mlp.evaluate()

    evaluator = Evaluator()
    evaluator.printAccuracy(data.test_set, pred)
Exemplo n.º 12
0
def classify_all():
    data = MNISTSeven("../data/mnist_seven.csv", 4000, 500, 500,
                      one_hot=False)

    mlp = MultilayerPerceptron(data.training_set,
                               data.validation_set,
                               data.test_set,
                               output_task="classify_all",
                               cost='crossentropy',
                               output_activation='softmax',
                               learning_rate=0.30,
                               epochs=50)

    mlp.train()
    pred = mlp.evaluate()

    evaluator = Evaluator()
    evaluator.printAccuracy(data.test_set, pred)
Exemplo n.º 13
0
def trainAndEvaluateClassifier(classifier, test_set, verbose=False, graph=False):
    # Train
    print("Train " + classifier.__class__.__name__ + "..")
    classifier.train(verbose=verbose, graph=graph)
    print("Done..")
    print("")

    # Evaluate
    print("Evaluate..")
    pred = classifier.evaluate()
    print("Done..")
    print("")

    # Results
    print("Result:")
    evaluator = Evaluator()
    # evaluator.printComparison(data.test_set, stupidPred)
    evaluator.printAccuracy(test_set, pred)
    print("")
Exemplo n.º 14
0
    def train(self, verbose=True):
        """Train the perceptron with the perceptron learning algorithm.

        Parameters
        ----------
        verbose : boolean
            Print logging messages with validation accuracy if verbose is True.
        """

        evaluator = Evaluator()
        for i in range(self.epochs):
            for input, label in zip(self.trainingSet.input, self.trainingSet.label):
                input = self.augmentedInput(input)
                output = 1 if self.fire(input) else 0
                error = label - output
                self.updateWeights(input, error)
            if verbose:
                print("Epoch: " + str(i+1))
                evaluator.printAccuracy(self.validationSet, self.evaluate(self.validationSet))
Exemplo n.º 15
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      oneHot=False)
    myMLPClassifier = MultilayerPerceptron(data.trainingSet,
                                           data.validationSet,
                                           data.testSet,
                                           learningRate=0.05,
                                           epochs=20)
    #no more changes after 20 epochs

    #Removed old stuff

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nMLP has been training..")
    myMLPClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("\nResult of the MLP recognizer:")
    #evaluator.printComparison(data.testSet, lrPred)
    evaluator.printAccuracy(data.testSet, mlpPred)

    # Draw
    plot = PerformancePlot("MLP validation")
    plot.draw_performance_epoch(myMLPClassifier.performances,
                                myMLPClassifier.epochs)
Exemplo n.º 16
0
    def train(self, verbose=True):
        """Train the perceptron with the perceptron learning algorithm.

        Parameters
        ----------
        verbose : boolean
            Print logging messages with validation accuracy if verbose is True.
        """
        evaluator = Evaluator()
        for i in range(self.epochs):
            if verbose:
                logging.debug("Epoch: " + str(i))
                evaluator.printAccuracy(self.validationSet,
                                        self.evaluate(self.validationSet))
            for j in range(len(self.trainingSet.input)):
                input = self.trainingSet.input[j]
                label = self.trainingSet.label[j]
                predictedClass = self.classify(input)
                error = label - predictedClass
                self.updateWeights(input, error)
Exemplo n.º 17
0
def main():
    # ------------  NOTE  --------------
    # oneHot does not work: It makes not sense to have binary labeled data (targetDigit or notTargetDigit), 
    # but having a MLP with 10 output nodes and softmax function. It needs to be trained with digit labels, not binary ones!
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                                                    oneHot=False)
                                                    
    myMLPClassifier = MultilayerPerceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        hiddenLayerSizes=[65,30], # size of hidden layers, input and output layers sizes are constant
                                        learningRate=0.028, # learning rate
                                        epochs=50) # epochs
                                                              

    # Train the classifiers
    print("=========================")
    print("Training..")
    
    print("\nMLP has been training..")
    myMLPClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()
    
    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    
    print("\nResult of the MLP:")
    #evaluator.printComparison(data.testSet, lrPred)    
    evaluator.printAccuracy(data.testSet, mlpPred)
    
    # Draw
    plot = PerformancePlot("MLP validation")
    plot.draw_performance_epoch(myMLPClassifier.performances,
                                myMLPClassifier.epochs)
Exemplo n.º 18
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      oneHot=False)
    myMLPClassifier = MultilayerPerceptron(data.trainingSet,
                                           data.validationSet,
                                           data.testSet,
                                           loss='ce',
                                           layers=[128, 150],
                                           learningRate=0.005,
                                           epochs=10)

    # Report the result #

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nMultilayer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("\nResult of the Multi Layer Perceptron recognizer:")
    evaluator.printComparison(data.testSet, mlpPred)
    evaluator.printAccuracy(data.testSet, mlpPred)

    # Draw
    plot = PerformancePlot("Multi Layer Perceptron validation")
    plot.draw_performance_epoch(myMLPClassifier.performances,
                                myMLPClassifier.epochs)
Exemplo n.º 19
0
    def train(self, verbose=True):
        """Train the Multi-layer Perceptrons

        Parameters
        ----------
        verbose : boolean
            Print logging messages with validation accuracy if verbose is True.
        """

        evaluator = Evaluator()

        accuracies = []

        for epoch in range(self.epochs):
            print("Training Epoch", epoch)
            for i, input, label in zip(range(len(self.training_set.input)),
                                       self.training_set.input,
                                       self.training_set.label):
                vec = np.zeros(self.layers[-1].n_out)
                vec[label] = 1

                out = self._feed_forward(input)
                error = self._compute_error(vec)
                for layer, nextLayer in zip(self.layers[:-1], self.layers[1:]):
                    weights = nextLayer.weights[1:].T
                    layer.computeDerivative(error, weights)
                    error = layer.deltas

                for layer in self.layers:
                    layer.updateWeights(self.learning_rate)

            if verbose:
                evaluator.printAccuracy(self.test_set, self.evaluate())

            accuracies.append(
                evaluator.getAccuracy(self.test_set, self.evaluate()))

        return accuracies
Exemplo n.º 20
0
def main():
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                  one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training..")

    # Stupid Classifier
    # myStupidClassifier = StupidRecognizer(data.training_set,
    #                                      data.validation_set,
    #                                      data.test_set)

    # print("\nStupid Classifier has been training..")
    # myStupidClassifier.train()
    # print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()

    # Perceptron
    # myPerceptronClassifier = Perceptron(data.training_set,
    #                                    data.validation_set,
    #                                    data.test_set,
    #                                    learning_rate=0.005,
    #                                    epochs=10)

    # print("\nPerceptron has been training..")
    # myPerceptronClassifier.train()
    # print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # perceptronPred = myPerceptronClassifier.evaluate()

    # Logistic Regression
    # myLRClassifier = LogisticRegression(data.training_set,
    #                                    data.validation_set,
    #                                    data.test_set,
    #                                    learning_rate=0.005,
    #                                    epochs=30)

    # print("\nLogistic Regression has been training..")
    # myLRClassifier.train()
    # print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # lrPred = myLRClassifier.evaluate()

    # Multi-layer Perceptron
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.05,
                                           epochs=30)

    print("\nMulti-layer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.test_set, stupidPred)

    # print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, perceptronPred)

    # print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the Multi-layer Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)

    # Draw
    plot = PerformancePlot("Multi-layer Perceptron on MNIST task")
    plot.draw_performance_epoch(myMLPClassifier.performances,
                                myMLPClassifier.epochs)
Exemplo n.º 21
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet,
                                          data.validationSet,
                                          data.testSet)
    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)
    myLRClassifier = LogisticRegression(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)
    MlpClassifier = MultilayerPerceptron(data.trainingSet,
                                                data.validationSet,
                                                data.testSet,
                                                learningRate=0.1,
                                                epochs = 30)

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    # print("\nPerceptron has been training..")
    # myPerceptronClassifier.train()
    # print("Done..")

    # print("\nLogistic Regression has been training..")
    # myLRClassifier.train()
    # print("Done..")

    print("\nStarting Backpropagation MLP training...")
    MlpClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    # perceptronPred = myPerceptronClassifier.evaluate()
    # lrPred = myLRClassifier.evaluate()
    mlpPred = MlpClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    # print("\nResult of the Perceptron recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.testSet, perceptronPred)
    
    # print("\nResult of the Logistic Regression recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)    
    # evaluator.printAccuracy(data.testSet, lrPred)

    print("\nResult of the MLP recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, mlpPred)

    # eval.printConfusionMatrix(data.testSet, pred)
    # eval.printClassificationResult(data.testSet, pred, target_names)

    print("=========================")
Exemplo n.º 22
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      oneHot=False)

    # myLRClassifier = LogisticRegression(data.trainingSet,
    #                                     data.validationSet,
    #                                     data.testSet,
    #                                     learningRate=0.005,
    #                                     epochs=30)
    hidden_layers = [
        LogisticLayer(128, 32, isClassifierLayer=True) for layer in range(1)
    ]
    mlp = MultilayerPerceptron(data.trainingSet,
                               data.validationSet,
                               data.testSet,
                               hidden_layers,
                               learningRate=0.005,
                               epochs=30)

    # Train the classifiers
    #print("=========================")
    print("Training...")

    # print("\nLogistic Regression has been training..")
    # myLRClassifier.train()
    # print("Done..")

    print("Training MLP...")
    mlp.train()
    print("Done.")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()
    # perceptronPred = myPerceptronClassifier.evaluate()
    # lrPred = myLRClassifier.evaluate()
    mlpPred = mlp.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    #     # #evaluator.printComparison(data.testSet, stupidPred)
    #     # evaluator.printAccuracy(data.testSet, stupidPred)
    #     #
    #     # print("\nResult of the Perceptron recognizer:")
    #     # #evaluator.printComparison(data.testSet, perceptronPred)
    #     # evaluator.printAccuracy(data.testSet, perceptronPred)
    #     #
    #     # print("\nResult of the Logistic Regression recognizer:")
    #     # #evaluator.printComparison(data.testSet, lrPred)
    #     # evaluator.printAccuracy(data.testSet, lrPred)

    print("Result of the MLP recognizer:")
    evaluator.printComparison(data.testSet, mlpPred)
    evaluator.printAccuracy(data.testSet, mlpPred)

    # Draw
    plot = PerformancePlot("Logistic Regression validation")
    # plot.draw_performance_epoch(myLRClassifier.performances,
    #                             myLRClassifier.epochs)
    plot.draw_performance_epoch(mlp.performances, mlp.epochs)
Exemplo n.º 23
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                                                    oneHot=False)

    data.trainingSet.input = np.insert(data.trainingSet.input, 0, 1,
                                        axis=1)
    data.validationSet.input = np.insert(data.validationSet.input, 0, 1,
                                          axis=1)
    data.testSet.input = np.insert(data.testSet.input, 0, 1, axis=1)

    myStupidClassifier = StupidRecognizer(data.trainingSet,
                                          data.validationSet,
                                          data.testSet)
    
    # myPerceptronClassifier = Perceptron(data.trainingSet,
    #                                     data.validationSet,
    #                                     data.testSet,
    #                                     learningRate=0.005,
    #                                     epochs=30)
                                        
    # myLRClassifier = LogisticRegression(data.trainingSet,
    #                                     data.validationSet,
    #                                     data.testSet,
    #                                     learningRate=0.005,
    #                                     epochs=30)

    MLPClassifier = MultilayerPerceptron(data.trainingSet, 
                        data.validationSet, 
                        data.testSet,
                        netStruct = [800, 100, 10], 
                        actFunc = ['relu', 'relu', 'softmax'], 
                        dropout = True,
                        loss = 'crossentropy',
                        learningRate = 0.001,
                        epochs = 300)

    
    # Report the result #
    print("=========================")
    evaluator = Evaluator()                                        

    # Train the classifiers
    print("=========================")
    print("Training..")

    # print("\nStupid Classifier has been training..")
    # myStupidClassifier.train()
    # print("Done..")
    #
    # print("\nPerceptron has been training..")
    # myPerceptronClassifier.train()
    # print("Done..")
    
    # print("\nLogistic Regression has been training..")
    # myLRClassifier.train()
    # print("Done..")

    print("\nMLP has been training..")
    MLPClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()
    # perceptronPred = myPerceptronClassifier.evaluate()
    # lrPred = myLRClassifier.evaluate()
    mlpPred = MLPClassifier.evaluate()
    
    # Report the result
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    # #evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.testSet, stupidPred)
    #
    # print("\nResult of the Perceptron recognizer:")
    # #evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.testSet, perceptronPred)
    
    # print("\nResult of the Logistic Regression recognizer:")
    # #evaluator.printComparison(data.testSet, lrPred)    
    # evaluator.printAccuracy(data.testSet, lrPred)

    print("\nResult of the MLP recognizer:")
    # evaluator.printComparison(data.testSet, lrPred)    
    evaluator.printAccuracy(data.testSet, mlpPred)

    # Draw
    # plot = PerformancePlot("MLP validation")
    # plot.draw_performance_epoch(MLPClassifier.performances,
    #                             MLPClassifier.epochs)

    plt.plot(range(MLPClassifier.epochs), MLPClassifier.performances, 'r--')
    plt.show()
Exemplo n.º 24
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      oneHot=False)
    # myStupidClassifier = StupidRecognizer(data.trainingSet,
    #                                       data.validationSet,
    #                                       data.testSet)

    # myPerceptronClassifier = Perceptron(data.trainingSet,
    #                                     data.validationSet,
    #                                     data.testSet,
    #                                     learningRate=0.005,
    #                                     epochs=30)
    #
    # myLRClassifier = LogisticRegression(data.trainingSet,
    #                                     data.validationSet,
    #                                     data.testSet,
    #                                     learningRate=0.005,
    #                                     epochs=30)

    myMLPlassifier = MultilayerPerceptron(data.trainingSet,
                                          data.validationSet,
                                          data.testSet,
                                          learningRate=0.005,
                                          epochs=30)

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # Train the classifiers
    print("=========================")
    print("Training..")

    # print("\nStupid Classifier has been training..")
    # myStupidClassifier.train()
    # print("Done..")

    # print("\nPerceptron has been training..")
    # myPerceptronClassifier.train()
    # print("Done..")
    #
    # print("\nLogistic Regression has been training..")
    # myLRClassifier.train()
    # print("Done..")

    print("\nMLP has been training..")
    myMLPlassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()
    # perceptronPred = myPerceptronClassifier.evaluate()
    # lrPred = myLRClassifier.evaluate()
    mplPred = myMLPlassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    #evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.testSet, stupidPred)

    # print("\nResult of the Perceptron recognizer:")
    # #evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.testSet, perceptronPred)
    #
    # print("\nResult of the Logistic Regression recognizer:")
    # #evaluator.printComparison(data.testSet, lrPred)
    # evaluator.printAccuracy(data.testSet, lrPred)
    print("Result of the MLP recognizer:")
    #evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, mplPred)
    # Draw
    plot = PerformancePlot("MLP validation")
    plot.draw_performance_epoch(myMLPlassifier.performances,
                                myMLPlassifier.epochs)
Exemplo n.º 25
0
def classify_one():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                      one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                   one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training..")

    # Stupid Classifier
    myStupidClassifier = StupidRecognizer(data.training_set,
                                          data.validation_set,
                                          data.test_set)

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()

    # Perceptron
    myPerceptronClassifier = Perceptron(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.005,
                                        epochs=10)

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    perceptronPred = myPerceptronClassifier.evaluate()

    # Logistic Regression
    myLRClassifier = LogisticRegression(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.20,
                                        epochs=30)

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    lrPred = myLRClassifier.evaluate()

    # Logistic Regression
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.30,
                                           epochs=50)

    print("\nMultilayer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.test_set, stupidPred)

    print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, perceptronPred)

    print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the Multi-layer Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)


    # Draw
    plot = PerformancePlot("Logistic Regression")
    plot.draw_performance_epoch(myLRClassifier.performances,
                                myLRClassifier.epochs)
Exemplo n.º 26
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                      one_hot=False)

    # Train
    # Denoising Auto Encoder
    n_encoder_neurons = 100
    myDAE = DenoisingAutoEncoder(data.training_set,
                                 data.validation_set,
                                 data.test_set,
                                 n_hidden_neurons=n_encoder_neurons,
                                 noise_ratio=0.2,
                                 learning_rate=0.05,
                                 epochs=5)

    print("Train autoencoder..")
    myDAE.train(verbose=True)
    print("Done..")

    # Multilayer Perceptron
    layers = []
    # Add auto envoder hidden layer.
    layers.append(LogisticLayer(data.training_set.input.shape[1], n_encoder_neurons, weights=myDAE.get_weights(), cost="mse", activation="sigmoid", learning_rate=0.05))
    # Add another hidden layer just like in the previous exercise.
    n_second_hidden_neurons = 100
    layers.append(LogisticLayer(n_encoder_neurons, n_second_hidden_neurons, cost="mse", activation="sigmoid", learning_rate=0.05))
    # Add output classifier layer with one neuron per digit.
    n_out_neurons = 10
    layers.append(LogisticLayer(n_second_hidden_neurons, n_out_neurons, cost="crossentropy", activation="softmax", learning_rate=0.05))
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           layers=layers,
                                           epochs=15)

    print("Train MLP..")
    myMLPClassifier.train(verbose=True)
    print("Done..")
    print("")

    # Evaluate
    print("Evaluate..")
    mlpPred = myMLPClassifier.evaluate()
    print("Done..")
    print("")

    print("Results:")
    evaluator = Evaluator()

    print("")

    # print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.test_set, stupidPred)

    # print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, perceptronPred)

    # print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, lrPred)

    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)

    # Draw
    plot = PerformancePlot("DAE + MLP on MNIST task")
    plot.draw_performance_epoch(myMLPClassifier.performances,
                                myMLPClassifier.epochs)
Exemplo n.º 27
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)
    mylogisticClassifier = LogisticRegression(data.trainingSet,
                                              data.validationSet,
                                              data.testSet,
                                              learningRate=0.005,
                                              epochs=30)
    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nLogsticregression has been training..")
    mylogisticClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    perceptronPred = mylogisticClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\n Result of the Logsticregression recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
    for i in range(2):
        for j in range(2):
            learningRate = (i + 1) * 0.002
            epochs = (j + 1) * 20

            mylogisticClassifier = LogisticRegression(
                data.trainingSet,
                data.validationSet,
                data.testSet,
                learningRate=learningRate,
                epochs=epochs)

            # Train the classifiers
            print("=========================")
            print("learning rate :" + str(learningRate))
            print("epoch :" + str(epochs))
            print("Training..")

            print("\nLogsticregression has been training..")
            mylogisticClassifier.train()
            print("Done..")

            # Do the recognizer
            # Explicitly specify the test set to be evaluated
            perceptronPred = mylogisticClassifier.evaluate()

            # Report the result
            print("=========================")
            evaluator = Evaluator()

            print("\n Result of the Logsticregression recognizer:")
            # evaluator.printComparison(data.testSet, perceptronPred)
            evaluator.printAccuracy(data.testSet, perceptronPred)
Exemplo n.º 28
0
def main():
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                  one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                      one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training..")

    # Stupid Classifier
    # myStupidClassifier = StupidRecognizer(data.training_set,
    #                                       data.validation_set,
    #                                       data.test_set)

    # print("\nStupid Classifier has been training..")
    # myStupidClassifier.train()
    # print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()

    # Perceptron
    # myPerceptronClassifier = Perceptron(data.training_set,
    #                                     data.validation_set,
    #                                     data.test_set,
    #                                     learning_rate=0.005,
    #                                     epochs=10)
    #
    # print("\nPerceptron has been training..")
    # myPerceptronClassifier.train()
    # print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # perceptronPred = myPerceptronClassifier.evaluate()

    # Logistic Regression
    # myLRClassifier = LogisticRegression(data.training_set,
    #                                     data.validation_set,
    #                                     data.test_set,
    #                                     learning_rate=0.005,
    #                                     epochs=30)
    #
    # print("\nLogistic Regression has been training..")
    # myLRClassifier.train()
    # print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # lrPred = myLRClassifier.evaluate()

    # Multi layer perceptron
    layers = [LogisticLayer(data.training_set.input.shape[1], 30, None, 'sigmoid', False),
              LogisticLayer(30, 10, None, 'softmax', True)]
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           layers=layers,
                                           learning_rate=0.005, epochs=30)

    print("\nLogistic Regression has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.test_set, stupidPred)

    # print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, perceptronPred)

    # print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the Multi-layer Perceptron recognizer (on test set):")
    evaluator.printComparison(data.test_set, mlpPred)
    evaluator.printAccuracy(data.test_set, mlpPred)
Exemplo n.º 29
0
def main():
    #data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                 one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      one_hot=False)

    # # NOTE:
    # # Other 1-digit classifiers do not make sense now for comparison purpose
    # # So you should comment them out, let alone the MLP training and evaluation
    #
    # # Train the classifiers #
    # print("=========================")
    # print("Training..")
    #
    # # Stupid Classifier
    # myStupidClassifier = StupidRecognizer(data.training_set,
    #                                       data.validation_set,
    #                                       data.test_set)
    #
    # print("\nStupid Classifier has been training..")
    # myStupidClassifier.train()
    # print("Done..")
    # # Do the recognizer
    # # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()
    #
    # # Perceptron
    # myPerceptronClassifier = Perceptron(data.training_set,
    #                                     data.validation_set,
    #                                     data.test_set,
    #                                     learning_rate=0.005,
    #                                     epochs=10)
    #
    # print("\nPerceptron has been training..")
    # myPerceptronClassifier.train()
    # print("Done..")
    # # Do the recognizer
    # # Explicitly specify the test set to be evaluated
    # perceptronPred = myPerceptronClassifier.evaluate()
    #
    # # Logistic Regression
    # myLRClassifier = LogisticRegression(data.training_set,
    #                                     data.validation_set,
    #                                     data.test_set,
    #                                     learning_rate=0.005,
    #                                     epochs=30)
    #
    # print("\nLogistic Regression has been training..")
    # myLRClassifier.train()
    # print("Done..")
    # # Do the recognizer
    # # Explicitly specify the test set to be evaluated
    # lrPred = myLRClassifier.evaluate()

    # Build up the network from specific layers
    # Here is an example of a MLP acting like the Logistic Regression
    layers = []
    layers.append(LogisticLayer(784, 5, None, "sigmoid", True))
    layers.append(LogisticLayer(5, 10, None, "softmax", False))

    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.5,
                                           epochs=30,
                                           layers=layers)
    print("\nLogistic Regression has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()
    #
    # Report the result #
    print("=========================")
    evaluator = Evaluator()
    #
    # # print("Result of the stupid recognizer:")
    # # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.test_set, stupidPred)
    # #
    # # print("\nResult of the Perceptron recognizer (on test set):")
    # # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, perceptronPred)
    # #
    # # print("\nResult of the Logistic Regression recognizer (on test set):")
    # # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, lrPred)
    #
    print("\nResult of the Multi-layer Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)
    #
    # # Draw
    # plot = PerformancePlot("Logistic Regression")
    # plot.draw_performance_epoch(myLRClassifier.performances,
    #                             myLRClassifier.epochs)

    # 3D Plot learning_rates + epochs -> accuracies
    print("Creating 3D plot. This may take some minutes...")
    learning_rate_sample_count = 5
    epochs_sample_count = 20
    xticks = np.logspace(-10.0,
                         0,
                         base=10,
                         num=learning_rate_sample_count,
                         endpoint=False)
    accuracies = []
    learning_rates = []
    epoch_values = []

    for i in itertools.product(range(learning_rate_sample_count)):
        learning_rate = 100 / np.exp(i)
        print("Calculating accuracy for: learning rate = %s" % (learning_rate))
        myMLPClassifier = MultilayerPerceptron(data.training_set,
                                               data.validation_set,
                                               data.test_set,
                                               learning_rate=learning_rate,
                                               epochs=epochs_sample_count,
                                               layers=layers)
        epoch_accuracies = myMLPClassifier.train(False)
        lrPred = myMLPClassifier.evaluate()
        epoch_values.append([e for e in range(epochs_sample_count)])
        learning_rates.append(
            [learning_rate for _ in range(epochs_sample_count)])
        accuracies.append(epoch_accuracies)

    accuracies_merged = list(itertools.chain(*accuracies))
    epochs_merged = list(itertools.chain(*epoch_values))
    learning_rates_merged = list(itertools.chain(*learning_rates))
    print(accuracies_merged)
    print(epochs_merged)
    print(learning_rates)

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(np.log10(learning_rates_merged), epochs_merged,
               accuracies_merged)
    ax.set_xlabel("Learning Rate")

    ax.set_xticks(np.log10(xticks))
    ax.set_xticklabels(xticks)
    ax.set_ylabel('Epochs')
    ax.set_zlabel('Accuracy')
    plt.show()
Exemplo n.º 30
0
Arquivo: run.py Projeto: lhtbc1/nn-ex3
def main():
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      oneHot=False)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)

    #myPerceptronClassifier = Perceptron(data.trainingSet,
    #data.validationSet,
    #data.testSet,
    #learningRate=0.005,
    #epochs=30)

    #myLRClassifier = LogisticRegression(data.trainingSet,
    #data.validationSet,
    #data.testSet,
    #learningRate=0.005,
    #epochs=30)

    mlp = MultilayerPerceptron(data.trainingSet,
                               data.validationSet,
                               data.testSet,
                               layers=None,
                               inputWeights=None,
                               outputTask='classification',
                               outputActivation='softmax',
                               loss='cee',
                               learningRate=0.01,
                               epochs=50)

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nPerceptron has been training..")
    #myPerceptronClassifier.train()
    print("Done..")

    print("\nLogistic Regression has been training..")
    #myLRClassifier.train()
    print("Done..")

    print("\nmlp has been training..")
    mlp.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    #perceptronPred = myPerceptronClassifier.evaluate()
    #lrPred = myLRClassifier.evaluate()
    mlppred = MultilayerPerceptron.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    #evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    #evaluator.printAccuracy(data.testSet, perceptronPred)

    print("\nResult of the Logistic Regression recognizer:")
    #evaluator.printComparison(data.testSet, lrPred)
    #evaluator.printAccuracy(data.testSet, lrPred)

    print("Result of the mlp:")
    evaluator.printAccuracy(data.testSet, mlppred)

    # Draw
    #plot = PerformancePlot("Logistic Regression validation")
    #plot.draw_performance_epoch(myLRClassifier.performances,
    #myLRClassifier.epochs)
    ####可能有问题
    plot = PerformancePlot("mlp validation")
    plot.draw_performance_epoch(mlp.performances, mlp.epochs)
Exemplo n.º 31
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)

    # parameters
    learnRate = 0.005
    maxEpochs = 20
    #epochNumber = 30

    xEpochs = []
    yAccuracyPerceptron = []
    yAccuracyLogistic = []
    # loop for gathering data for graph plotting
    for epochNumber in xrange(1, maxEpochs + 1):

        myPerceptronClassifier = Perceptron(
            data.trainingSet,
            data.validationSet,
            data.testSet,
            learningRate=learnRate,  #0.005,
            epochs=epochNumber)
        # Uncomment this to run Logistic Neuron Layer
        myLRClassifier = LogisticRegression(
            data.trainingSet,
            data.validationSet,
            data.testSet,
            learningRate=learnRate,  #0.005,
            epochs=epochNumber  #30
        )

        # Train the classifiers
        print("=========================")
        print("Training..")

        print("\nStupid Classifier has been training..")
        myStupidClassifier.train()
        print("Done..")

        print("\nPerceptron has been training..")
        myPerceptronClassifier.train()
        print("Done..")

        print("\nLogistic Regression has been training..")
        myLRClassifier.train()
        print("Done..")

        # Do the recognizer
        # Explicitly specify the test set to be evaluated
        stupidPred = myStupidClassifier.evaluate()
        perceptronPred = myPerceptronClassifier.evaluate()
        lrPred = myLRClassifier.evaluate()

        # Report the result
        print("=========================")
        evaluator = Evaluator()

        print("Result of the stupid recognizer:")
        #evaluator.printComparison(data.testSet, stupidPred)
        evaluator.printAccuracy(data.testSet, stupidPred)

        print("\nResult of the Perceptron recognizer:")
        #evaluator.printComparison(data.testSet, perceptronPred)
        evaluator.printAccuracy(data.testSet, perceptronPred)

        print("\nResult of the Logistic Regression recognizer:")
        #evaluator.printComparison(data.testSet, lrPred)
        evaluator.printAccuracy(data.testSet, lrPred)

        # accumulate plotting data
        xEpochs.append(epochNumber)
        yAccuracyPerceptron.append(
            accuracy_score(data.testSet.label, perceptronPred) * 100)
        yAccuracyLogistic.append(
            accuracy_score(data.testSet.label, lrPred) * 100)

        # === end of for loop ===

    # plot the graph
    plt.plot(xEpochs, yAccuracyPerceptron, marker='o', label='Perceptron')
    plt.plot(xEpochs,
             yAccuracyLogistic,
             marker='o',
             color='r',
             label='Logistic Neuron')
    plt.xlabel('Number of epochs')
    plt.ylabel('Accuracy [%]')
    plt.title(
        'Performance on different epochs\n(using: testSet | learningRate: ' +
        str(learnRate) + ')')
    #plt.legend()
    plt.legend(loc=4)
    #plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.)
    #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
    plt.show()
Exemplo n.º 32
0
def main():
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                  one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                      one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training the autoencoder..")

    myDAE = DenoisingAutoEncoder(data.training_set,
                                 data.validation_set,
                                 data.test_set,
                                 learning_rate=0.05,
                                 epochs=10)

    print("\nAutoencoder has been training..")
    myDAE.train()
    print("Done..")

    # Multi-layer Perceptron
    # NOTES:
    # Now take the trained weights (layer) from the Autoencoder
    # Feed it to be a hidden layer of the MLP, continue training (fine-tuning)
    # And do the classification

    # Correct the code here
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.05,
                                           epochs=30, input_weights=myDAE._get_weights())

    print("\nMulti-layer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.test_set, stupidPred)

    # print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, perceptronPred)

    # print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the DAE + MLP recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)

    # Draw
    #plot = PerformancePlot("DAE + MLP on MNIST task")
    #plot.draw_performance_epoch(myMLPClassifier.performances,
    #                            myMLPClassifier.epochs)

    #print myDAE._get_weights().shape[1]
    weights = 0.5 * myDAE._get_weights() + 0.5
    wplot = WeightVisualizationPlot(weights)
    wplot.draw_weights()
Exemplo n.º 33
0
def main():
    #data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                 one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                      one_hot=False)

    # # NOTE:
    # # Other 1-digit classifiers do not make sense now for comparison purpose
    # # So you should comment them out, let alone the MLP training and evaluation
    #
    # # Train the classifiers #
    # print("=========================")
    # print("Training..")
    #
    # # Stupid Classifier
    # myStupidClassifier = StupidRecognizer(data.training_set,
    #                                       data.validation_set,
    #                                       data.test_set)
    #
    # print("\nStupid Classifier has been training..")
    # myStupidClassifier.train()
    # print("Done..")
    # # Do the recognizer
    # # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()
    #
    # # Perceptron
    # myPerceptronClassifier = Perceptron(data.training_set,
    #                                     data.validation_set,
    #                                     data.test_set,
    #                                     learning_rate=0.005,
    #                                     epochs=10)
    #
    # print("\nPerceptron has been training..")
    # myPerceptronClassifier.train()
    # print("Done..")
    # # Do the recognizer
    # # Explicitly specify the test set to be evaluated
    # perceptronPred = myPerceptronClassifier.evaluate()
    #
    # # Logistic Regression
    # myLRClassifier = LogisticRegression(data.training_set,
    #                                     data.validation_set,
    #                                     data.test_set,
    #                                     learning_rate=0.005,
    #                                     epochs=30)
    #
    # print("\nLogistic Regression has been training..")
    # myLRClassifier.train()
    # print("Done..")
    # # Do the recognizer
    # # Explicitly specify the test set to be evaluated
    # lrPred = myLRClassifier.evaluate()


    # Build up the network from specific layers
    # Here is an example of a MLP acting like the Logistic Regression
    layers = []
    layers.append(LogisticLayer(784, 5, None, "sigmoid", True))
    layers.append(LogisticLayer(5, 10, None, "softmax", False))

    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.5,
                                           epochs=30, layers=layers)
    print("\nLogistic Regression has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()
    #
    # Report the result #
    print("=========================")
    evaluator = Evaluator()
    #
    # # print("Result of the stupid recognizer:")
    # # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.test_set, stupidPred)
    # #
    # # print("\nResult of the Perceptron recognizer (on test set):")
    # # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, perceptronPred)
    # #
    # # print("\nResult of the Logistic Regression recognizer (on test set):")
    # # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, lrPred)
    #
    print("\nResult of the Multi-layer Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)
    #
    # # Draw
    # plot = PerformancePlot("Logistic Regression")
    # plot.draw_performance_epoch(myLRClassifier.performances,
    #                             myLRClassifier.epochs)

    # 3D Plot learning_rates + epochs -> accuracies
    print("Creating 3D plot. This may take some minutes...")
    learning_rate_sample_count = 5
    epochs_sample_count = 20
    xticks = np.logspace(-10.0, 0, base=10, num=learning_rate_sample_count, endpoint=False)
    accuracies = []
    learning_rates = []
    epoch_values = []

    for i in itertools.product(range(learning_rate_sample_count)):
        learning_rate = 100 / np.exp(i)
        print("Calculating accuracy for: learning rate = %s" % (learning_rate))
        myMLPClassifier = MultilayerPerceptron(data.training_set,
                                               data.validation_set,
                                               data.test_set,
                                               learning_rate=learning_rate,
                                               epochs=epochs_sample_count,
                                               layers=layers)
        epoch_accuracies = myMLPClassifier.train(False)
        lrPred = myMLPClassifier.evaluate()
        epoch_values.append([e for e in range(epochs_sample_count)])
        learning_rates.append([learning_rate for _ in range(epochs_sample_count)])
        accuracies.append(epoch_accuracies)

    accuracies_merged = list(itertools.chain(*accuracies))
    epochs_merged = list(itertools.chain(*epoch_values))
    learning_rates_merged = list(itertools.chain(*learning_rates))
    print(accuracies_merged)
    print(epochs_merged)
    print(learning_rates)

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(np.log10(learning_rates_merged), epochs_merged, accuracies_merged)
    ax.set_xlabel("Learning Rate")

    ax.set_xticks(np.log10(xticks))
    ax.set_xticklabels(xticks)
    ax.set_ylabel('Epochs')
    ax.set_zlabel('Accuracy')
    plt.show()
Exemplo n.º 34
0
def main():
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                  one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training the autoencoder..")

    myDAE = DenoisingAutoEncoder(data.training_set,
                                 data.validation_set,
                                 data.test_set,
                                 learning_rate=0.05,
                                 epochs=30)

    print("\nAutoencoder  has been training..")
    myDAE.train()
    print("Done..")

    # Multi-layer Perceptron
    # NOTES:
    # Now take the trained weights (layer) from the Autoencoder
    # Feed it to be a hidden layer of the MLP, continue training (fine-tuning)
    # And do the classification

    # Correct the code here
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.05,
                                           epochs=30)

    print("\nMulti-layer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.test_set, stupidPred)

    # print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, perceptronPred)

    # print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the DAE + MLP recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)

    # Draw
    plot = PerformancePlot("DAE + MLP on MNIST task")
    plot.draw_performance_epoch(myMLPClassifier.performances,
                                myMLPClassifier.epochs)
Exemplo n.º 35
0
def main():
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                  one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                      one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training the autoencoder..")

    myDAE = DenoisingAutoEncoder(data.training_set,
                                 data.validation_set,
                                 data.test_set,
                                 learning_rate=dae_lr,
                                 noiseRatio=dae_nr,
                                 hiddenLayerNeurons=hiddenLayerNeurons,
                                 epochs=dae_epochs)
 
    print("\nAutoencoder  has been training..")
    myDAE.train()
    print("Done..")
 
    # Multi-layer Perceptron
    # NOTES:
    # Now take the trained weights (layer) from the Autoencoder
    # Feed it to be a hidden layer of the MLP, continue training (fine-tuning)
    # And do the classification
 
 
    myMLPLayers = []
    # First hidden layer
    number_of_1st_hidden_layer = hiddenLayerNeurons
    myMLPLayers.append(LogisticLayer(data.training_set.input.shape[1]-1,    # bias "1" already added so remove one
                                     number_of_1st_hidden_layer,
                                     weights=myDAE._get_weights(),
                                     activation="sigmoid",
                                     is_classifier_layer=False))
    # Output layer
    number_of_output_layer = 10
    myMLPLayers.append(LogisticLayer(number_of_1st_hidden_layer,
                                     number_of_output_layer,
                                     None,
                                     activation="softmax",
                                     is_classifier_layer=True))
 
    # Correct the code here
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           layers=myMLPLayers,
                                           learning_rate=mlp_lr,
                                           epochs=mlp_epochs)
    
    # remove double added bias "1"
    myMLPClassifier.__del__()



    print("\nMulti-layer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.test_set, stupidPred)

    # print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, perceptronPred)

    # print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the DAE + MLP recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)

    os.chdir("..")
    # Draw
    plot = PerformancePlot("DAE + MLP on MNIST task on validation set")
    plot.draw_performance_epoch(myMLPClassifier.performances, myMLPClassifier.epochs, "plots", filename)

    print("drawing weights of auto encoder mlp input…")
    weight_plotter = WeightVisualizationPlot(myDAE.autoencMLP)
    weight_plotter.plot()