Exemplo n.º 1
0
def build(matcher_config):
    """Builds a matcher object based on the matcher config.

  Args:
    matcher_config: A matcher.proto object containing the config for the desired
      Matcher.

  Returns:
    Matcher based on the config.

  Raises:
    ValueError: On empty matcher proto.
  """
    if not isinstance(matcher_config, matcher_pb2.Matcher):
        raise ValueError('matcher_config not of type matcher_pb2.Matcher.')
    if matcher_config.WhichOneof('matcher_oneof') == 'argmax_matcher':
        matcher = matcher_config.argmax_matcher
        matched_threshold = unmatched_threshold = None
        if not matcher.ignore_thresholds:
            matched_threshold = matcher.matched_threshold
            unmatched_threshold = matcher.unmatched_threshold
        return argmax_matcher.ArgMaxMatcher(
            matched_threshold=matched_threshold,
            unmatched_threshold=unmatched_threshold,
            negatives_lower_than_unmatched=matcher.negatives_lower_than_unmatched,
            force_match_for_each_row=matcher.force_match_for_each_row,
            use_matmul_gather=matcher.use_matmul_gather)
    if matcher_config.WhichOneof('matcher_oneof') == 'bipartite_matcher':
        matcher = matcher_config.bipartite_matcher
        return bipartite_matcher.GreedyBipartiteMatcher(matcher.use_matmul_gather)
    raise ValueError('Empty matcher.')
Exemplo n.º 2
0
    def test_get_expected_matches_with_all_rows_be_default(self):
        similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
        expected_match_results = [-1, 1, 0]

        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        match = matcher.match(similarity_matrix)
        with self.test_session() as sess:
            match_results_out = sess.run(match._match_results)
            self.assertAllEqual(match_results_out, expected_match_results)
Exemplo n.º 3
0
    def test_get_expected_matches_with_only_one_valid_row_at_bottom(self):
        similarity_matrix = tf.constant([[0.15, 0.2, 0.3], [0.50, 0.1, 0.8]])
        valid_rows = tf.constant([False, True], dtype=tf.bool)
        expected_match_results = [-1, -1, 0]

        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        match = matcher.match(similarity_matrix, valid_rows)
        with self.test_session() as sess:
            match_results_out = sess.run(match._match_results)
            self.assertAllEqual(match_results_out, expected_match_results)
Exemplo n.º 4
0
    def test_get_no_matches_with_zero_valid_rows(self):
        similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
        valid_rows = tf.zeros([2], dtype=tf.bool)
        expected_match_results = [-1, -1, -1]

        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        match = matcher.match(similarity_matrix, valid_rows)
        with self.test_session() as sess:
            match_results_out = sess.run(match._match_results)
            self.assertAllEqual(match_results_out, expected_match_results)
Exemplo n.º 5
0
def create_target_assigner(reference, stage=None,
                           negative_class_weight=1.0, use_matmul_gather=False):
    """Factory function for creating standard target assigners.

  Args:
    reference: string referencing the type of TargetAssigner.
    stage: string denoting stage: {proposal, detection}.
    negative_class_weight: classification weight to be associated to negative
      anchors (default: 1.0)
    use_matmul_gather: whether to use matrix multiplication based gather which
      are better suited for TPUs.

  Returns:
    TargetAssigner: desired target assigner.

  Raises:
    ValueError: if combination reference+stage is invalid.
  """
    if reference == 'Multibox' and stage == 'proposal':
        similarity_calc = sim_calc.NegSqDistSimilarity()
        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()

    elif reference == 'FasterRCNN' and stage == 'proposal':
        similarity_calc = sim_calc.IouSimilarity()
        matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.7,
                                               unmatched_threshold=0.3,
                                               force_match_for_each_row=True,
                                               use_matmul_gather=use_matmul_gather)
        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
            scale_factors=[10.0, 10.0, 5.0, 5.0])

    elif reference == 'FasterRCNN' and stage == 'detection':
        similarity_calc = sim_calc.IouSimilarity()
        # Uses all proposals with IOU < 0.5 as candidate negatives.
        matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                               negatives_lower_than_unmatched=True,
                                               use_matmul_gather=use_matmul_gather)
        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
            scale_factors=[10.0, 10.0, 5.0, 5.0])

    elif reference == 'FastRCNN':
        similarity_calc = sim_calc.IouSimilarity()
        matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                               unmatched_threshold=0.1,
                                               force_match_for_each_row=False,
                                               negatives_lower_than_unmatched=False,
                                               use_matmul_gather=use_matmul_gather)
        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()

    else:
        raise ValueError('No valid combination of reference and stage.')

    return TargetAssigner(similarity_calc, matcher, box_coder,
                          negative_class_weight=negative_class_weight)
Exemplo n.º 6
0
    def test_raises_error_on_invalid_groundtruth_labels(self):
        similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=1.0)
        unmatched_class_label = tf.constant([[0, 0], [0, 0], [0, 0]],
                                            tf.float32)
        target_assigner = targetassigner.TargetAssigner(
            similarity_calc, matcher, box_coder)

        prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
        priors = box_list.BoxList(prior_means)

        box_corners = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9],
                       [.75, 0, .95, .27]]
        boxes = box_list.BoxList(tf.constant(box_corners))
        groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)

        with self.assertRaises(ValueError):
            target_assigner.assign(priors,
                                   boxes,
                                   groundtruth_labels,
                                   unmatched_class_label=unmatched_class_label)
Exemplo n.º 7
0
def create_target_assigner(reference,
                           stage=None,
                           negative_class_weight=1.0,
                           unmatched_cls_target=None):
    """Factory function for creating standard target assigners.

  Args:
    reference: string referencing the type of TargetAssigner.
    stage: string denoting stage: {proposal, detection}.
    negative_class_weight: classification weight to be associated to negative
      anchors (default: 1.0)
    unmatched_cls_target: a float32 tensor with shape [d_1, d_2, ..., d_k]
      which is consistent with the classification target for each
      anchor (and can be empty for scalar targets).  This shape must thus be
      compatible with the groundtruth labels that are passed to the Assign
      function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]).
      If set to None, unmatched_cls_target is set to be 0 for each anchor.

  Returns:
    TargetAssigner: desired target assigner.

  Raises:
    ValueError: if combination reference+stage is invalid.
  """
    if reference == 'Multibox' and stage == 'proposal':
        similarity_calc = sim_calc.NegSqDistSimilarity()
        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()

    elif reference == 'FasterRCNN' and stage == 'proposal':
        similarity_calc = sim_calc.IouSimilarity()
        matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.7,
                                               unmatched_threshold=0.3,
                                               force_match_for_each_row=True)
        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
            scale_factors=[10.0, 10.0, 5.0, 5.0])

    elif reference == 'FasterRCNN' and stage == 'detection':
        similarity_calc = sim_calc.IouSimilarity()
        # Uses all proposals with IOU < 0.5 as candidate negatives.
        matcher = argmax_matcher.ArgMaxMatcher(
            matched_threshold=0.5, negatives_lower_than_unmatched=True)
        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
            scale_factors=[10.0, 10.0, 5.0, 5.0])

    elif reference == 'FastRCNN':
        similarity_calc = sim_calc.IouSimilarity()
        matcher = argmax_matcher.ArgMaxMatcher(
            matched_threshold=0.5,
            unmatched_threshold=0.1,
            force_match_for_each_row=False,
            negatives_lower_than_unmatched=False)
        box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()

    else:
        raise ValueError('No valid combination of reference and stage.')

    return TargetAssigner(similarity_calc,
                          matcher,
                          box_coder,
                          negative_class_weight=negative_class_weight,
                          unmatched_cls_target=unmatched_cls_target)