Exemplo n.º 1
0
 def testBuildNonExistingLayerLargeModel(self):
     """Tests that the model is built correctly without unnecessary layers."""
     inputs = tf.random_uniform((5, 331, 331, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         pnasnet.build_pnasnet_large(inputs, 1000)
     vars_names = [x.op.name for x in tf.trainable_variables()]
     self.assertIn('cell_stem_0/1x1/weights', vars_names)
     self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names)
Exemplo n.º 2
0
 def testBuildPreLogitsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = None
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         net, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
     self.assertFalse('AuxLogits' in end_points)
     self.assertFalse('Predictions' in end_points)
     self.assertTrue(net.op.name.startswith('final_layer/Mean'))
     self.assertListEqual(net.get_shape().as_list(), [batch_size, 4320])
Exemplo n.º 3
0
 def testOverrideHParamsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     config = pnasnet.large_imagenet_config()
     config.set_hparam('data_format', 'NCHW')
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         _, end_points = pnasnet.build_pnasnet_large(
             inputs, num_classes, config=config)
     self.assertListEqual(
         end_points['Stem'].shape.as_list(), [batch_size, 540, 42, 42])
Exemplo n.º 4
0
 def testNoAuxHeadLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     for use_aux_head in (True, False):
         tf.reset_default_graph()
         inputs = tf.random_uniform((batch_size, height, width, 3))
         tf.train.create_global_step()
         config = pnasnet.large_imagenet_config()
         config.set_hparam('use_aux_head', int(use_aux_head))
         with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
             _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes,
                                                         config=config)
         self.assertEqual('AuxLogits' in end_points, use_aux_head)
Exemplo n.º 5
0
 def testBuildLogitsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         logits, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
     auxlogits = end_points['AuxLogits']
     predictions = end_points['Predictions']
     self.assertListEqual(auxlogits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertListEqual(predictions.get_shape().as_list(),
                          [batch_size, num_classes])
Exemplo n.º 6
0
def pnasnet_large_arg_scope_for_detection(is_batch_norm_training=False):
    """Defines the default arg scope for the PNASNet Large for object detection.

  This provides a small edit to switch batch norm training on and off.

  Args:
    is_batch_norm_training: Boolean indicating whether to train with batch norm.

  Returns:
    An `arg_scope` to use for the PNASNet Large Model.
  """
    imagenet_scope = pnasnet.pnasnet_large_arg_scope()
    with arg_scope(imagenet_scope):
        with arg_scope([slim.batch_norm],
                       is_training=is_batch_norm_training) as sc:
            return sc
Exemplo n.º 7
0
    def testAllEndPointsShapesLargeModel(self):
        batch_size = 5
        height, width = 331, 331
        num_classes = 1000
        inputs = tf.random_uniform((batch_size, height, width, 3))
        tf.train.create_global_step()
        with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
            _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)

        endpoints_shapes = {'Stem': [batch_size, 42, 42, 540],
                            'Cell_0': [batch_size, 42, 42, 1080],
                            'Cell_1': [batch_size, 42, 42, 1080],
                            'Cell_2': [batch_size, 42, 42, 1080],
                            'Cell_3': [batch_size, 42, 42, 1080],
                            'Cell_4': [batch_size, 21, 21, 2160],
                            'Cell_5': [batch_size, 21, 21, 2160],
                            'Cell_6': [batch_size, 21, 21, 2160],
                            'Cell_7': [batch_size, 21, 21, 2160],
                            'Cell_8': [batch_size, 11, 11, 4320],
                            'Cell_9': [batch_size, 11, 11, 4320],
                            'Cell_10': [batch_size, 11, 11, 4320],
                            'Cell_11': [batch_size, 11, 11, 4320],
                            'global_pool': [batch_size, 4320],
                            # Logits and predictions
                            'AuxLogits': [batch_size, 1000],
                            'Predictions': [batch_size, 1000],
                            'Logits': [batch_size, 1000],
                            }
        self.assertEqual(len(end_points), 17)
        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            tf.logging.info('Endpoint name: {}'.format(endpoint_name))
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertIn(endpoint_name, end_points)
            self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                                 expected_shape)
Exemplo n.º 8
0
    def _extract_box_classifier_features(self, proposal_feature_maps, scope):
        """Extracts second stage box classifier features.

    This function reconstructs the "second half" of the PNASNet
    network after the part defined in `_extract_proposal_features`.

    Args:
      proposal_feature_maps: A 4-D float tensor with shape
        [batch_size * self.max_num_proposals, crop_height, crop_width, depth]
        representing the feature map cropped to each proposal.
      scope: A scope name.

    Returns:
      proposal_classifier_features: A 4-D float tensor with shape
        [batch_size * self.max_num_proposals, height, width, depth]
        representing box classifier features for each proposal.
    """
        del scope

        # Number of used stem cells.
        num_stem_cells = 2

        # Note that we always feed into 2 layers of equal depth
        # where the first N channels corresponds to previous hidden layer
        # and the second N channels correspond to the final hidden layer.
        hidden_previous, hidden = tf.split(proposal_feature_maps, 2, axis=3)

        # Note that what follows is largely a copy of build_pnasnet_large() within
        # pnasnet.py. We are copying to minimize code pollution in slim.

        # TODO(shlens,skornblith): Determine the appropriate drop path schedule.
        # For now the schedule is the default (1.0->0.7 over 250,000 train steps).
        hparams = pnasnet.large_imagenet_config()
        if not self._is_training:
            hparams.set_hparam('drop_path_keep_prob', 1.0)

        # Calculate the total number of cells in the network
        total_num_cells = hparams.num_cells + num_stem_cells

        normal_cell = pnasnet.PNasNetNormalCell(hparams.num_conv_filters,
                                                hparams.drop_path_keep_prob,
                                                total_num_cells,
                                                hparams.total_training_steps)
        with arg_scope([slim.dropout, nasnet_utils.drop_path],
                       is_training=self._is_training):
            with arg_scope([slim.batch_norm],
                           is_training=self._train_batch_norm):
                with arg_scope([
                        slim.avg_pool2d, slim.max_pool2d, slim.conv2d,
                        slim.batch_norm, slim.separable_conv2d,
                        nasnet_utils.factorized_reduction,
                        nasnet_utils.global_avg_pool,
                        nasnet_utils.get_channel_index,
                        nasnet_utils.get_channel_dim
                ],
                               data_format=hparams.data_format):
                    # This corresponds to the cell number just past 'Cell_7' used by
                    # _extract_proposal_features().
                    start_cell_num = 8
                    true_cell_num = start_cell_num + num_stem_cells

                    with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
                        net = _build_pnasnet_base(
                            hidden_previous,
                            hidden,
                            normal_cell=normal_cell,
                            hparams=hparams,
                            true_cell_num=true_cell_num,
                            start_cell_num=start_cell_num)

        proposal_classifier_features = net
        return proposal_classifier_features