Exemplo n.º 1
0
    def getFileNames(self, maskName: str,
                     sampleFreq: float) -> Tuple[str, str]:
        """Get the name of a mask file
        
        This method is here to give consistent file names for mask files.

        Parameters
        ----------
        maskName : str
            The name of the mask
        sampleFreq : float
            The sampling frequency of the data

        Returns
        -------
        infoFile : str
            The name of the mask infoFile
        winFile : str
            The name of the mask winFile
        """
        checkAndMakeDir(self.datapath)
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        name: str = maskName + "_{}".format(sampleFreqStr)
        infoFile: str = os.path.join(self.datapath, name + ".info")
        winFile: str = os.path.join(
            self.datapath, name)  # no need for extension here, numpy adds one
        return infoFile, winFile
Exemplo n.º 2
0
    def writeResult(self, specdir: str, postpend: str, freq, data: np.ndarray,
                    variances: np.ndarray, **kwargs):
        """Write the transfer function file

        Parameters
        ----------
        specdir : str
            The spectra data being used for the transfer function estimate
        postpend : str
            The optional postpend to the transfer function file
        data : np.ndarray
            The transfer function estimates
        variances : np.ndarray
            The transfer function variances
        remotesite : str, optional
            Optionally, if there is a remote site
        remotechans : List[str], optional
            Optionally add the remote channels if there is a remote site
        """
        # path for writing out to
        sampleFreqStr = fileFormatSampleFreq(self.decParams.sampleFreq)
        if postpend == "":
            filename = "{}_fs{:s}_{}".format(self.outSite, sampleFreqStr,
                                             specdir)
        else:
            filename = "{}_fs{:s}_{}_{}".format(self.outSite, sampleFreqStr,
                                                specdir, postpend)
        datapath = os.path.join(self.outpath, sampleFreqStr)
        checkAndMakeDir(datapath)
        outfile = os.path.join(datapath, filename)
        # now construct the transferFunctionData object
        numFreq = len(freq)
        dataDict = {}
        varDict = {}
        for i in range(0, self.outSize):
            for j in range(0, self.inSize):
                key = "{}{}".format(self.outChannels[i], self.inChannels[j])
                dataArray = np.empty(shape=(numFreq), dtype="complex")
                varArray = np.empty(shape=(len(freq)), dtype="float")
                for ifreq in range(0, numFreq):
                    dataArray[ifreq] = data[ifreq][i, j]
                    varArray[ifreq] = variances[ifreq][i, j]
                dataDict[key] = dataArray
                varDict[key] = varArray
        tfData = TransferFunctionData(freq, dataDict, varDict)
        # now make the writer and write out
        tfWriter = TransferFunctionWriter(outfile, tfData)
        tfWriter.setHeaders(
            sampleFreq=self.decParams.sampleFreq,
            insite=self.inSite,
            inchans=self.inChannels,
            outsite=self.outSite,
            outchans=self.outChannels,
        )
        if "remotesite" in kwargs:
            tfWriter.addHeader("remotesite", kwargs["remotesite"])
        if "remotechans" in kwargs:
            tfWriter.addHeader("remotechans", kwargs["remotechans"])
        tfWriter.write()
Exemplo n.º 3
0
def getTransferFunctionData(projData: ProjectData, site: str,
                            sampleFreq: float,
                            **kwargs) -> TransferFunctionData:
    """Get transfer function data

    Parameters
    ----------
    projData : projecData
        The project data
    site : str
        Site to get the transfer functiond data for
    sampleFreq : int, float
        The sampling frequency for which to get the transfer function data
    specdir : str, optional
        The spectra directories used
    postpend : str, optional
        The postpend on the transfer function files
    """
    from resistics.transfunc.io import TransferFunctionReader

    options: Dict = dict()
    options["specdir"]: str = projData.config.configParams["Spectra"][
        "specdir"]
    options["postpend"]: str = ""
    options = parseKeywords(options, kwargs)

    # deal with the postpend
    if options["postpend"] != "":
        postpend = "_{}".format(options["postpend"])
    else:
        postpend = options["postpend"]

    siteData = projData.getSiteData(site)
    sampleFreqStr = fileFormatSampleFreq(sampleFreq)
    path = os.path.join(
        siteData.transFuncPath,
        "{:s}".format(sampleFreqStr),
        "{}_fs{:s}_{}{}".format(site, sampleFreqStr, options["specdir"],
                                postpend),
    )
    # check path
    if not checkFilepath(path):
        projectWarning("No transfer function file with name {}".format(path))
        return False

    projectText(
        "Reading transfer function for site {}, sample frequency {}, file {}".
        format(site, sampleFreq, path))

    tfReader = TransferFunctionReader(path)
    tfReader.printInfo()
    return tfReader.tfData
Exemplo n.º 4
0
def test_fileFormatSampleFreq() -> None:
    from resistics.common.io import fileFormatSampleFreq

    assert fileFormatSampleFreq(128) == "128_000"
    assert fileFormatSampleFreq(4096.1567) == "4096_157"
Exemplo n.º 5
0
def viewStatisticDensityplot(
    projData: ProjectData,
    site: str,
    sampleFreq: Union[int, float],
    stat: str,
    crossplots: List[List[str]],
    **kwargs
) -> Union[Figure, None]:
    """View statistic data as a density plot for a single sampling frequency of a site
    
    Parameters
    ----------
    projData : ProjectData
        A project instance
    site : str
        The site for which to plot statistics
    stat : str
        The statistic to plot
    sampleFreq : float
        The sampling frequency for which to plot statistics
    crossplots : List[List[str]]
        The statistic element pairs to crossplot
    declevel : int
        The decimation level to plot
    eFreqI : int
        The evaluation frequency index
    specdir : str
        The spectra directory
    maskname : str
        Mask name         
    xlim : List, optional
        Limits for the x axis
    ylim : List, optional
        Limits for the y axis
    maxcols : int
        The maximum number of columns in the plots        
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options    

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, None.
    """
    from resistics.common.plot import (
        savePlot,
        plotOptionsSpec,
        getPlotRowsAndCols,
        colorbar2dSpectra,
    )

    options = {}
    options["declevel"] = 0
    options["eFreqI"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["maskname"] = ""
    options["xlim"] = []
    options["ylim"] = []
    options["maxcols"] = 2
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting density plot for statistic {}, site {} and sampling frequency {}".format(
            stat, site, sampleFreq
        )
    )

    statData = getStatisticDataForSampleFreq(
        projData,
        site,
        sampleFreq,
        stat,
        declevel=options["declevel"],
        specdir=options["specdir"],
    )
    statMeas = list(statData.keys())
    if len(statMeas) == 0:
        projectWarning(
            "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format(
                site, sampleFreq, stat, options["declevel"]
            )
        )
        return None
    # get the evaluation frequency
    eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]]

    # get the mask data
    maskWindows = []
    if options["maskname"] != "":
        maskData = getMaskData(projData, site, options["maskname"], sampleFreq)
        maskWindows = maskData.getMaskWindowsFreq(
            options["declevel"], options["eFreqI"]
        )

    # plot information
    nrows, ncols = getPlotRowsAndCols(options["maxcols"], len(crossplots))

    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    # suptitle
    st = fig.suptitle(
        "{} density plots for {}, sampling frequency {} Hz,\ndecimation level {} and evaluation frequency {} Hz".format(
            stat, site, sampleFreq, options["declevel"], eFreq
        ),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # now plot the data
    for idx, cplot in enumerate(crossplots):
        ax = plt.subplot(nrows, ncols, idx + 1)
        plt.title("Crossplot {}".format(cplot), fontsize=plotfonts["title"])

        plotAll1 = []
        plotAll2 = []
        for meas in statMeas:
            stats = statData[meas].getStats(maskwindows=maskWindows)
            plotI1 = statData[meas].winStats.index(cplot[0])
            plotData1 = np.squeeze(stats[:, options["eFreqI"], plotI1])
            plotI2 = statData[meas].winStats.index(cplot[1])
            plotData2 = np.squeeze(stats[:, options["eFreqI"], plotI2])
            # add to all data
            if plotData1.size == 0:
                continue
            if plotData1.size == 1:
                plotAll1 = plotAll1 + [float(plotData1)]
                plotAll2 = plotAll2 + [float(plotData2)]
            else:
                plotAll1 = plotAll1 + plotData1.tolist()
                plotAll2 = plotAll2 + plotData2.tolist()

        plotAll1 = np.array(plotAll1)
        plotAll2 = np.array(plotAll2)

        nbins = 200
        if len(options["xlim"]) > 0:
            plt.xlim(options["xlim"])
            rangex = options["xlim"]
        else:
            minx = np.percentile(plotAll1, 2)
            maxx = np.percentile(plotAll1, 98)
            ax.set_xlim(minx, maxx)
            rangex = [minx, maxx]

        if len(options["ylim"]) > 0:
            plt.ylim(options["ylim"])
            rangey = options["ylim"]
        else:
            miny = np.percentile(plotAll2, 2)
            maxy = np.percentile(plotAll2, 98)
            ax.set_ylim(miny, maxy)
            rangey = [miny, maxy]

        plt.hist2d(
            plotAll1,
            plotAll2,
            bins=(nbins, nbins),
            range=[rangex, rangey],
            cmap=plt.cm.inferno,
        )

        # axis format
        plt.xlabel(cplot[0], fontsize=plotfonts["axisLabel"])
        plt.ylabel(cplot[1], fontsize=plotfonts["axisLabel"])
        plt.grid(True)
        # set tick sizes
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            label.set_fontsize(plotfonts["axisTicks"])

    # plot format, show and save
    # fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92])
    if options["save"]:
        impath = projData.imagePath
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        filename = "statDensityplot_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format(
            stat,
            site,
            sampleFreqStr,
            options["declevel"],
            options["eFreqI"],
            options["specdir"],
        )
        if options["maskname"] != "":
            filename = "{}_{}".format(filename, options["maskname"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Exemplo n.º 6
0
def viewStatisticHistogram(
    projData: ProjectData, site: str, sampleFreq: float, stat: str, **kwargs
) -> Union[Figure, None]:
    """View statistic histograms for a single sampling frequency of a site
    
    Parameters
    ----------
    projData : ProjectData
        A project instance
    site : str
        The site for which to plot statistics
    stat : str
        The statistic to plot
    sampleFreq : float
        The sampling frequency for which to plot statistics
    declevel : int
        The decimation level to plot
    eFreqI : int
        The evaluation frequency index       
    specdir : str
        The spectra directory        
    maskname : str
        Mask name 
    numbins : int
        The number of bins for the histogram data binning
    xlim : List, optional
        Limits for the x axis
    maxcols : int
        The maximum number of columns in the plots
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options    

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None. If no data was found, None.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, getPlotRowsAndCols

    options = {}
    options["declevel"] = 0
    options["eFreqI"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["maskname"] = ""
    options["numbins"] = 40
    options["xlim"] = []
    options["maxcols"] = 4
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting histogram for statistic {}, site {} and sampling frequency {}".format(
            stat, site, sampleFreq
        )
    )

    statData = getStatisticDataForSampleFreq(
        projData,
        site,
        sampleFreq,
        stat,
        declevel=options["declevel"],
        specdir=options["specdir"],
    )
    statMeas = list(statData.keys())
    if len(statMeas) == 0:
        projectWarning(
            "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format(
                site, sampleFreq, stat, options["declevel"]
            )
        )
        return None
    # get the statistic components
    statComponents = statData[statMeas[0]].winStats
    # get the evaluation frequency
    eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]]

    # get the mask data
    maskWindows = []
    if options["maskname"] != "":
        maskData = getMaskData(projData, site, options["maskname"], sampleFreq)
        maskWindows = maskData.getMaskWindowsFreq(
            options["declevel"], options["eFreqI"]
        )

    # plot information
    nrows, ncols = getPlotRowsAndCols(options["maxcols"], len(statComponents))
    numbins = options["numbins"]

    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    # suptitle
    st = fig.suptitle(
        "{} histogram for {}, sampling frequency {} Hz, decimation level {} and evaluation frequency {} Hz".format(
            stat, site, sampleFreq, options["declevel"], eFreq
        ),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # now plot the data
    for idx, val in enumerate(statComponents):
        ax = plt.subplot(nrows, ncols, idx + 1)
        plt.title("Histogram {}".format(val), fontsize=plotfonts["title"])

        plotData = np.empty(shape=(0))
        for meas in statMeas:
            stats = statData[meas].getStats(maskwindows=maskWindows)
            plotData = np.concatenate(
                (plotData, np.squeeze(stats[:, options["eFreqI"], idx]))
            )
        # remove infinities and nans
        plotData = plotData[np.isfinite(plotData)]

        # x axis options
        xlim = (
            options["xlim"]
            if len(options["xlim"]) > 0
            else [np.min(plotData), np.max(plotData)]
        )
        plt.xlim(xlim)
        plt.xlabel("Value", fontsize=plotfonts["axisLabel"])
        # now plot with xlim in mind
        plt.hist(plotData, numbins, range=xlim, facecolor="red", alpha=0.75)
        plt.grid()
        # y axis options
        plt.ylabel("Count", fontsize=plotfonts["axisLabel"])
        # set tick sizes
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            label.set_fontsize(plotfonts["axisTicks"])

    # plot format, show and save
    fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92])
    if options["save"]:
        impath = projData.imagePath
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        filename = "statHist_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format(
            stat,
            site,
            sampleFreqStr,
            options["declevel"],
            options["eFreqI"],
            options["specdir"],
        )
        if options["maskname"] != "":
            filename = "{}_{}".format(filename, options["maskname"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Exemplo n.º 7
0
def viewStatistic(
    projData: ProjectData, site: str, sampleFreq: Union[int, float], stat: str, **kwargs
) -> Union[Figure, None]:
    """View statistic data for a single sampling frequency of a site
    
    Parameters
    ----------
    projData : ProjectData
        A project instance
    site : str
        The site for which to plot statistics
    stat : str
        The statistic to plot
    sampleFreq : float
        The sampling frequency for which to plot statistics
    declevel : int
        The decimation level to plot
    eFreqI : int
        The evaluation frequency index
    specdir : str
        The spectra directory
    maskname : str
        Mask name         
    clim : List, optional
        Limits for colourbar axis
    xlim : List, optional
        Limits for the x axis
    ylim : List, optional
        Limits for the y axis
    colortitle : str, optional
        Title for the colourbar
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options    

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, None.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, getPlotRowsAndCols

    options = {}
    options["declevel"] = 0
    options["eFreqI"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["maskname"] = ""
    options["clim"] = []
    options["xlim"] = []
    options["ylim"] = []
    options["colortitle"] = ""
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting statistic {} for site {} and sampling frequency {}".format(
            stat, site, sampleFreq
        )
    )
    statData = getStatisticDataForSampleFreq(
        projData,
        site,
        sampleFreq,
        stat,
        declevel=options["declevel"],
        specdir=options["specdir"],
    )
    statMeas = list(statData.keys())
    if len(statMeas) == 0:
        projectWarning(
            "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format(
                site, sampleFreq, stat, options["declevel"]
            )
        )
        return None
    # get the evaluation frequency
    eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]]

    # get the mask data
    maskWindows = []
    if options["maskname"] != "":
        maskData = getMaskData(projData, site, options["maskname"], sampleFreq)
        maskWindows = maskData.getMaskWindowsFreq(
            options["declevel"], options["eFreqI"]
        )

    # setup the figure
    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])

    # get the date limits
    siteData = projData.getSiteData(site)
    if len(options["xlim"]) == 0:
        start = siteData.getMeasurementStart(statMeas[0])
        end = siteData.getMeasurementEnd(statMeas[0])
        for meas in statMeas:
            start = min(start, siteData.getMeasurementStart(meas))
            end = max(end, siteData.getMeasurementEnd(meas))
        options["xlim"] = [start, end]

    # do the plots
    for meas in statMeas:
        statData[meas].view(
            options["eFreqI"],
            fig=fig,
            xlim=options["xlim"],
            ylim=options["ylim"],
            clim=options["clim"],
            label=meas,
            plotfonts=options["plotoptions"]["plotfonts"],
            maskwindows=maskWindows,
        )
    # add a legened
    plt.legend(markerscale=4, fontsize=plotfonts["legend"])

    # do the title after all the plots
    fig.suptitle(
        "{} values for {}, sampling frequency = {:.2f} Hz, decimation level = {} and evaluation frequency {} Hz".format(
            stat, site, sampleFreq, options["declevel"], eFreq
        ),
        fontsize=plotfonts["suptitle"],
    )

    # plot format, show and save
    fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92])
    if options["save"]:
        impath = projData.imagePath
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        filename = "stat_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format(
            stat,
            site,
            sampleFreqStr,
            options["declevel"],
            options["eFreqI"],
            options["specdir"],
        )
        if options["maskname"] != "":
            filename = "{}_{}".format(filename, options["maskname"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig