Exemplo n.º 1
0
def create_model(dim):
    model = resnet18.make_resnet_18(dim).call(isTrain=False)
    model.trainable = False

    optimizer = tf.keras.optimizers.Adam(1e-4)

    return model, optimizer
Exemplo n.º 2
0
def create_model():
    # base_model=tf.keras.applications.InceptionV3(
    #     include_top=False,
    #     weights='imagenet',
    #     input_tensor=None,
    #     input_shape=[227,227,3],
    #     pooling=None,
    #     classes=2
    # )

    # # tf.keras.utils.plot_model(base_model , to_file='model_base.png', show_shapes=True, dpi=64) #Added to visualise model
    # base_model.trainable=False

    # model = tf.keras.Sequential()
    # model.add(base_model)
    # model.add(tf.keras.layers.Flatten())
    # model.add(tf.keras.layers.Dense(2))
    # model.add(tf.keras.layers.Softmax())
    model = resnet18.make_resnet_18(dim).call(isTrain=False)
    model.trainable = False

    optimizer = tf.keras.optimizers.Adam(1e-4)

    return model, optimizer
Exemplo n.º 3
0
train_summary_writer = tf.summary.create_file_writer(out_file)

# out_file_Test = STORE_PATH + f"/TEST_{dt.datetime.now().strftime('%d%m%Y%H%M')}"
# train_summary_writer_Test = tf.summary.create_file_writer(out_file_Test)

train_dir1 = 'H:/Datasets/celebA_Male_female/669126_1178231_bundle_archive/Dataset/Train/Male'
train_dir2 = 'H:/Datasets/celebA_Male_female/669126_1178231_bundle_archive/Dataset/Train/female'
# images_concat_shuffled,images_labels_concat_shuffled=data.prep_dataset(train_dir1,train_dir2)

images_labels_concat_shuffled, images_concat_shuffled = data.datasets(
    train_dir1, train_dir2, 13000, bias=0.5)

# test_dir1 = 'H:/Datasets/celebA_Male_female/669126_1178231_bundle_archive/Dataset/Test/Male'
# test_dir2 = 'H:/Datasets/celebA_Male_female/669126_1178231_bundle_archive/Dataset/Test/female'

model = resnet18.make_resnet_18().call()
tf.keras.utils.plot_model(model,
                          to_file='resnet.png',
                          show_shapes=True,
                          dpi=64)  #Added to visualise model

optimizer = tf.keras.optimizers.Adam(1e-4)

EPOCH = 10
BATCH_SIZE = 64
batch_num = len(images_labels_concat_shuffled) / BATCH_SIZE


def cross_entropy_loss(expected_labels, predicted_labels):
    cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy()
    loss = cross_entropy(expected_labels, predicted_labels)