Exemplo n.º 1
0
    def setupClass(cls):
        data = sm.datasets.sunspots.load()
        endog = data.endog
        results = []
        for lag in range(1, 16 + 1):
            endog_tmp = endog[16 - lag:]
            r = AR(endog_tmp).fit(maxlag=lag)
            # See issue #324 for why we're doing these corrections vs. R
            # results
            k_ar = r.k_ar
            k_trend = r.k_trend
            log_sigma2 = np.log(r.sigma2)
            #import ipdb; ipdb.set_trace()
            aic = r.aic
            aic = (aic - log_sigma2) * (1 + k_ar) / (1 + k_ar + k_trend)
            aic += log_sigma2

            hqic = r.hqic
            hqic = (hqic - log_sigma2) * (1 + k_ar) / (1 + k_ar + k_trend)
            hqic += log_sigma2

            bic = r.bic
            bic = (bic - log_sigma2) * (1 + k_ar) / (1 + k_ar + k_trend)
            bic += log_sigma2

            results.append([aic, hqic, bic, r.fpe])
        res1 = np.asarray(results).T.reshape(4, -1, order='C')
        # aic correction to match R
        cls.res1 = res1
        cls.res2 = results_ar.ARLagResults("const").ic
Exemplo n.º 2
0
 def setupClass(cls):
     data = sm.datasets.sunspots.load()
     endog = data.endog
     results = []
     for lag in range(1, 16 + 1):
         endog_tmp = endog[16 - lag:]
         r = AR(endog_tmp).fit(maxlag=lag)
         results.append([r.aic, r.hqic, r.bic, r.fpe])
     cls.res1 = np.asarray(results).T.reshape(4, -1, order='C')
     cls.res2 = results_ar.ARLagResults("const").ic