Exemplo n.º 1
0
 def setupClass(cls):
     from results.results_discrete import RandHIE
     data = sm.datasets.randhie.load()
     exog = sm.add_constant(data.exog, prepend=False)
     cls.res1 = NegativeBinomial(data.endog, exog, 'nb2').fit(method='newton', disp=0)
     res2 = RandHIE()
     res2.negativebinomial_nb2_bfgs()
     cls.res2 = res2
Exemplo n.º 2
0
 def setupClass(cls):
     from results.results_discrete import RandHIE
     data = sm.datasets.randhie.load()
     exog = sm.add_constant(data.exog.view((float, 9)))
     cls.res1 = Poisson(data.endog, exog).fit(method='newton', disp=0)
     res2 = RandHIE()
     res2.poisson()
     cls.res2 = res2
Exemplo n.º 3
0
 def setupClass(cls):
     from results.results_discrete import RandHIE
     data = sm.datasets.randhie.load()
     exog = sm.add_constant(data.exog, prepend=False)
     cls.res1 = Poisson(data.endog, exog).fit(method='newton', disp=0)
     res2 = RandHIE()
     res2.poisson()
     cls.res2 = res2
 def __init__(self):
     from results.results_discrete import RandHIE
     data = sm.datasets.randhie.load()
     nobs = len(data.endog)
     exog = sm.add_constant(data.exog.view(float).reshape(nobs,-1))
     self.res1 = Poisson(data.endog, exog).fit(method='newton', disp=0)
     res2 = RandHIE()
     res2.poisson()
     self.res2 = res2