Exemplo n.º 1
0
def processor(time_=None):
    '''
    Esta función detecta las transacciones en la tabla transactions.
    y las ejecuta sobre el nbi.
    Por ahora no se reintentan transacciones fallidas.
    '''
    logger.debug(f"time_ {time_}")

    if not time_:
        return

    engine = get_engine()
    session = get_session(engine=engine)

    # detectar las transacciones a procesar
    # trxs = session.query(Transaction).filter(Transaction.sent.is_(null()))

    # trxs = session.query(Transaction).filter(
    #     or_(Transaction.sent.is_(null()),
    #         Transaction.oldtilt != Transaction.newtilt)).first()

    trxs = session.query(Transaction).filter(
        or_(Transaction.sent.is_(null()),
            Transaction.oldtilt != Transaction.newtilt))

    if ENV == 'sim':
        for trx in trxs:
            # logger.info(f"trx \n{trx}")
            nbi_simulator(time_=time_, session_=session, trx_=trx)

    if ENV == 'prod':
        nbi_processor(time_=time_, session_=session, trxs_=trxs)

    session.commit()
    session.close()
Exemplo n.º 2
0
def scheduler(time_=None):
    logger.debug(f"time_ {time_}")

    if not time_:
        return

    engine = get_engine()
    db_connection = engine.connect()

    # set más reciente de 'High' overshooters en terreno plano
    query_ = '''
            select o.cellname
            from overshooters o, terrains t
            where o.cellname = t.cellname
                and o.overshooter and t.is_plain
                and o.intensity = 'High'
                and o.datetimeid = (select max(datetimeid) from overshooters)
                and t.datetimeid = (select max(datetimeid) from terrains);
            '''

    candidates_df = pd.read_sql(query_, db_connection)
    db_connection.close()

    # entregar los candidatos a mid_term_evaluator()
    mid_term_evaluator(time_=time_, candidates_df=candidates_df)
Exemplo n.º 3
0
def load_rets(time_=None):
    logger.info(f'ENV {ENV}')

    if not time_:
        return

    list_ = [
        {
            'datetimeid': time_,
            'node': 'MBTS-AIS_3G_003',
            'cellname': 'AIS_4G_003_3',
            'eci': 2816002,
            'devicename': 'RET82',
            'deviceno': 2,
            'tilt': 30,
            'subname': 'RET82',
            'subunitno': 1,
            'localcellid': 2,
        },
        {
            'datetimeid': time_,
            'node': 'MBTS-ARA_3G_013',
            'cellname': 'ARA_4G_013_3',
            'eci': 2304258,
            'devicename': 'RET82R_S3',
            'deviceno': 2,
            'tilt': 40,
            'subname': 'RET82R_S3',
            'subunitno': 1,
            'localcellid': 2,
        },
        {
            'datetimeid': time_,
            'node': 'MBTS-ARA_3G_013',
            'cellname': 'ARA_4G_013_3',
            'eci': 2304258,
            'devicename': 'RET82L_S3',
            'deviceno': 12,
            'tilt': 40,
            'subname': 'RET82L_S3',
            'subunitno': 1,
            'localcellid': 2,
        },
    ]

    if ENV == 'sim':
        df = pd.DataFrame.from_dict(list_)

    if ENV == 'prod':
        df = rets_data(time_=time_)

    engine = get_engine()
    session = get_session(engine=engine)
    df.to_sql('rets', con=engine, if_exists='append', index=False)
    session.commit()
    session.close()
Exemplo n.º 4
0
def load_terrains(time_=None,
                  neighborhood_df=pd.DataFrame(),
                  cells_df=pd.DataFrame()):
    logger.info(f'ENV {ENV}')

    if not time_:
        return

    list_ = [
        {
            'datetimeid': time_,
            'cellname': 'AIS_4G_003_3',
            'is_plain': True,
            'slope': 0,
        },
        {
            'datetimeid': time_,
            'cellname': 'ARA_4G_013_3',
            'is_plain': True,
            'slope': 0,
        },
    ]

    if ENV == 'sim':
        terrain_df = pd.DataFrame.from_dict(list_)

    if ENV == 'prod':
        terrain_df, neighborhood_df, cells_df = check_terrain(
            time_=time_, neighborhood_df=neighborhood_df, cells_df=cells_df)

    logger.info(f'terrain_df.shape {terrain_df.shape}')
    logger.info(f'terrain_df.columns {terrain_df.columns}')

    terrains_dict = terrain_df.to_dict('index')
    engine = get_engine()
    session = get_session(engine=engine)

    now_ = datetime.datetime.now()
    for index, dict_ in terrains_dict.items():
        is_plain_ = not dict_['HILL']
        if is_plain_:
            slope_ = 0
        else:
            slope_ = 1 if int(dict_['HEIGHT_DIFF']) > 0 else -1
        obj_ = Terrain(datetimeid=now_,
                       cellname=dict_['CELLNAME'],
                       slope=slope_,
                       is_plain=is_plain_)
        session.add(obj_)
    session.commit()
    session.close()

    return neighborhood_df, cells_df
Exemplo n.º 5
0
def enabler(cellnames=None):
    logger.debug(f'ENV {ENV}')

    engine = get_engine()
    session = get_session(engine=engine)

    for cellname in cellnames:
        # logger.debug(f'cellname {cellname}')
        antennas = session.query(Ret).filter(Ret.cellname == cellname, )
        for antenna in antennas:
            antenna.enabled = True
            # logger.info(f'node {antenna.node} deviceno {antenna.deviceno}')
            # session.commit()

    session.commit()
    session.close()
Exemplo n.º 6
0
def trx_updater(commands=None, sent_=None):
    '''
    Esta función recibe una lista de diccionarios, con las respuestas
    a los comandos de cambio de tilt ejecutados en el NBI.
    Si el resultado es exitoso se actualizan las tablas rets y
    transactions.
    '''
    logger.debug(f"ENV {ENV}")

    if not commands:
        return

    engine = get_engine()
    session = get_session(engine=engine)

    for command in commands:
        result = command['data']['result']
        logger.debug(f"result {result}")
        executed_time_stamp_str = command['data']['executed_time_stamp']
        executed_time_stamp = datetime.datetime.strptime(
            executed_time_stamp_str, '%Y-%m-%d %H:%M:%S')
        object_id = command['object_id']
        trx = session.query(Transaction).filter(
            Transaction.id == object_id).first()
        if not trx:
            session.commit()
            session.close()
            return

        trx.sent = sent_
        if result:
            trx.oldtilt = trx.newtilt
            trx.success = executed_time_stamp
            ret_updater(node=trx.node,
                        deviceno=trx.deviceno,
                        tilt=trx.newtilt,
                        session=session)
        else:
            logger.info(f"result {result}")
            trx.failure = executed_time_stamp

    session.commit()
    session.close()
Exemplo n.º 7
0
def load_overshooters():
    logger.info(f'load_overshooters:')
    neighborhood_df, overshooters_df = overshooting()
    overshooters_dict = overshooters_df.to_dict('index')
    engine = get_engine()
    session = get_session(engine=engine)

    now_ = datetime.now()
    for index, dict_ in overshooters_dict.items():
        obj_ = Overshooter(
            date_time = now_,
            cell_name = dict_['CELLNAME'],
            time_advanced = int(dict_['ta_']),
            average_distance = int(dict_['distance_']),
            is_overshooter = dict_['overshooter']
            )
        session.add(obj_)
    session.commit()
    session.close()
Exemplo n.º 8
0
def load_overshooters(time_=None,
                      neighborhood_df=pd.DataFrame(),
                      cells_df=pd.DataFrame()):
    logger.info(f'load_overshooters:')

    if not time_:
        return

    list_ = [
        {
            'datetimeid': time_,
            'cellname': 'AIS_4G_003_3',
            'ta_calculated': 14.4,
            'average_distance': 2.43982546537283,
            'overshooter': True,
            'intensity': 'High',
        },
        {
            'datetimeid': time_,
            'cellname': 'ARA_4G_013_3',
            'ta_calculated': 14.4,
            'average_distance': 6.14587256200947,
            'overshooter': True,
            'intensity': 'High',
        },
    ]

    if ENV == 'sim':
        df = pd.DataFrame.from_dict(list_)

    if ENV == 'prod':
        df = overshooters(time_=time_,
                          neighborhood_df=neighborhood_df,
                          cells_df=cells_df)

    engine = get_engine()
    session = get_session(engine=engine)
    df.to_sql('overshooters', con=engine, if_exists='append', index=False)
    session.commit()
    session.close()
Exemplo n.º 9
0
def transactions(time_=None):
    '''
    Esta función detecta las transacciones en la tabla transactions.
    y las ejecuta sobre el nbi.
    Por ahora no se reintentan transacciones fallidas.
    '''
    logger.debug(f"time_ {time_}")

    if not time_:
        return

    engine = get_engine()
    session = get_session(engine=engine)

    # detectar las transacciones a procesar
    trxs = session.query(Transaction).filter(Transaction.sent.is_(null()))
    for trx in trxs:
        # logger.info(f"trx \n{trx}")
        processor(time_=time_,session_=session,trx_=trx)

    session.commit()
    session.close()
Exemplo n.º 10
0
def evaluator(time_=None, candidates_kpis_df=pd.DataFrame()):
    '''
    Esta función recibe todas las celdas candidatas y sus kpis promedio,
    para el instante actual.
    Dependiendo de si la celda existe en la tabla transactions,
    hay comparaciones con kpis promedio iniciales.
    En base a reglas pueden entrar transacciones a la tabla transactions.
    '''
    logger.debug(f"time_ {time_}")

    if not time_:
        return

    if candidates_kpis_df.empty:
        return

    logger.debug(f"candidates_kpis_df \n{candidates_kpis_df}")

    engine = get_engine()
    session = get_session(engine=engine)

    for idx in candidates_kpis_df.index:  # overshooters plain terrain
        node = candidates_kpis_df['eNodeB_Name'][idx]
        user_avg = candidates_kpis_df['user_avg'][idx]
        user_thrp_dl = candidates_kpis_df['user_thrp_dl'][idx]
        traffic_dl = candidates_kpis_df['traffic_dl'][idx]

        antennas = session.query(Ret).filter(Ret.node == node, )
        for antenna in antennas:
            if not antenna.enabled:
                continue
            logger.debug(f"node {antenna.node} deviceno {antenna.deviceno}")
            trx = session.query(Transaction).filter(
                and_(Transaction.node == antenna.node,
                     Transaction.deviceno == antenna.deviceno)).first()
            if trx:
                # si trx anterior no fue exitosa
                if not trx.success:
                    logger.debug(f"continue: success {trx.success}")
                    continue
                cond_ = delta_percentaje(
                    trx.user_thrp_dl_initial,
                    user_thrp_dl) > MAX_DELTA_USER_THRP_DL_PERCENTAJE
                cond_ = cond_ or delta_percentaje(
                    trx.traffic_dl_initial,
                    traffic_dl) > MAX_DELTA_TRAFFIC_DL_PERCENTAJE
                if cond_:
                    # rollback
                    logger.debug(f"rollback")
                    newtilt_ = trx.oldtilt
                else:
                    newtilt_ = newtilt(trx.newtilt)

                if trx.newtilt == newtilt_:
                    logger.debug(f"continue: newtilt_ {newtilt_}")
                    continue

                # si nuevo tilt es distinto al último
                trx.newtilt = newtilt_
                trx.generated = datetime.now()
            else:
                if not (user_avg >= MIN_USER_AVG and user_avg <= MAX_USER_AVG):
                    logger.debug(f"continue: user_avg {user_avg}")
                    continue
                if antenna.tilt == newtilt(antenna.tilt):
                    logger.debug(
                        f"continue: antenna.tilt == newtilt(antenna.tilt)")
                    continue
                # se crea entrada en tabla transactions
                trx = Transaction(
                    node=antenna.node,
                    cellname=antenna.cellname,
                    deviceno=antenna.deviceno,
                    subunitno=antenna.subunitno,
                    tilt_initial=antenna.tilt,

                    # oldtilt = tilt_initial,
                    oldtilt=antenna.tilt,

                    # originalmente
                    # user_thrp_dl_initial = user_thrp_dl,
                    # traffic_dl_initial = traffic_dl,

                    # para ver si pasa
                    user_thrp_dl_initial=float(user_thrp_dl),
                    traffic_dl_initial=float(traffic_dl),
                    newtilt=newtilt(antenna.tilt),
                    datetimeid=time_,
                    generated=datetime.now(),
                )
                logger.debug(f"trx \n{trx}")
                session.add(trx)
            session.commit()

    session.commit()
    session.close()