Exemplo n.º 1
0
    def _parse_sites(points, res_file=None):
        """Parse project points from list or slice

        Parameters
        ----------
        points : str | pd.DataFrame | slice | list
            Slice specifying project points, string pointing to a project
            points csv, or a dataframe containing the effective csv contents.
        res_file : str | NoneType
            Optional resource file to find maximum length of project points if
            points slice stop is None.

        Returns
        -------
        df : pd.DataFrame
            DataFrame mapping sites (gids) to SAM technology (config)
        """
        df = pd.DataFrame(columns=['gid', 'config'])
        if isinstance(points, (list, tuple)):
            # explicit site list, set directly
            df['gid'] = points
        elif isinstance(points, slice):
            stop = points.stop
            if stop is None:
                if res_file is None:
                    raise ValueError('Must supply a resource file if '
                                     'points is a slice of type '
                                     ' slice(*, None, *)')

                multi_h5_res, _ = check_res_file(res_file)
                if multi_h5_res:
                    stop = MultiFileResource(res_file).shape[1]
                else:
                    stop = Resource(res_file).shape[1]

            df['gid'] = list(range(*points.indices(stop)))
        else:
            raise TypeError('Project Points sites needs to be set as a list, '
                            'tuple, or slice, but was set as: {}'.format(
                                type(points)))

        df['config'] = None

        return df
Exemplo n.º 2
0
    def regions(cls,
                regions,
                res_file,
                sam_config,
                tech=None,
                curtailment=None):
        """
        Generate ProjectPoints for gids nearest to given latitude longitudes

        Parameters
        ----------
        regions : dict
            Dictionary of regions to extract points for in the form:
            {'region': 'region_column'}
        res_file : str
            Resource file, needed to fine nearest neighbors
        sam_config : dict | str | list | SAMConfig
            SAM input configuration ID(s) and file path(s). Keys are the SAM
            config ID(s), top level value is the SAM path. Can also be a single
            config file str. If it's a list, it is mapped to the sorted list
            of unique configs requested by points csv. Can also be a
            pre loaded SAMConfig object.
        tech : str, optional
            SAM technology to analyze (pvwattsv7, windpower, tcsmoltensalt,
            solarwaterheat, troughphysicalheat, lineardirectsteam)
            The string should be lower-cased with spaces and _ removed,
            by default None
        curtailment : NoneType | dict | str | config.curtailment.Curtailment
            Inputs for curtailment parameters. If not None, curtailment inputs
            are expected. Can be:
                - Explicit namespace of curtailment variables (dict)
                - Pointer to curtailment config json file with path (str)
                - Instance of curtailment config object
                  (config.curtailment.Curtailment)

        Returns
        -------
        pp : ProjectPoints
            Initialized ProjectPoints object for points nearest to given
            lat_lons
        """
        multi_h5_res, hsds = check_res_file(res_file)
        if multi_h5_res:
            res_cls = MultiFileResourceX
        else:
            res_cls = ResourceX

        logger.info('Extracting ProjectPoints for desired regions')
        points = []
        with res_cls(res_file, hsds=hsds) as f:
            meta = f.meta
            for region, region_col in regions.items():
                logger.debug('- {}: {}'.format(region_col, region))
                # pylint: disable=no-member
                gids = f.region_gids(region, region_col=region_col)
                logger.debug('- Resource gids:\n{}'.format(gids))
                if points:
                    duplicates = np.intersect1d(gids, points).tolist()
                    if duplicates:
                        msg = ('reV Cannot currently handle duplicate '
                               'Resource gids! The given regions containg the '
                               'same gids:\n{}'.format(duplicates))
                        logger.error(msg)
                        raise RuntimeError(msg)

                points.extend(gids.tolist())

        pp = cls(points,
                 sam_config,
                 tech=tech,
                 res_file=res_file,
                 curtailment=curtailment)

        meta = meta.loc[pp.sites]
        cols = list(set(regions.values()))
        for c in cols:
            pp._df[c] = meta[c].values

        return pp
Exemplo n.º 3
0
    def lat_lon_coords(cls,
                       lat_lons,
                       res_file,
                       sam_config,
                       tech=None,
                       curtailment=None):
        """
        Generate ProjectPoints for gids nearest to given latitude longitudes

        Parameters
        ----------
        lat_lons : str | tuple | list | ndarray
            Pair or pairs of latitude longitude coordinates
        res_file : str
            Resource file, needed to fine nearest neighbors
        sam_config : dict | str | list | SAMConfig
            SAM input configuration ID(s) and file path(s). Keys are the SAM
            config ID(s), top level value is the SAM path. Can also be a single
            config file str. If it's a list, it is mapped to the sorted list
            of unique configs requested by points csv. Can also be a
            pre loaded SAMConfig object.
        tech : str, optional
            SAM technology to analyze (pvwattsv7, windpower, tcsmoltensalt,
            solarwaterheat, troughphysicalheat, lineardirectsteam)
            The string should be lower-cased with spaces and _ removed,
            by default None
        curtailment : NoneType | dict | str | config.curtailment.Curtailment
            Inputs for curtailment parameters. If not None, curtailment inputs
            are expected. Can be:
                - Explicit namespace of curtailment variables (dict)
                - Pointer to curtailment config json file with path (str)
                - Instance of curtailment config object
                  (config.curtailment.Curtailment)

        Returns
        -------
        pp : ProjectPoints
            Initialized ProjectPoints object for points nearest to given
            lat_lons
        """
        lat_lons = cls._parse_lat_lons(lat_lons)

        multi_h5_res, hsds = check_res_file(res_file)
        if multi_h5_res:
            res_cls = MultiFileResourceX
            res_kwargs = {}
        else:
            res_cls = ResourceX
            res_kwargs = {'hsds': hsds}

        logger.info('Converting latitude longitude coordinates into nearest '
                    'ProjectPoints')
        logger.debug('- (lat, lon) pairs:\n{}'.format(lat_lons))
        with res_cls(res_file, **res_kwargs) as f:
            gids = f.lat_lon_gid(lat_lons)  # pylint: disable=no-member

        if len(gids) != len(np.unique(gids)):
            uniques, pos, counts = np.unique(gids,
                                             return_counts=True,
                                             return_inverse=True)
            duplicates = {}
            for idx in np.where(counts > 1)[0]:
                duplicate_lat_lons = lat_lons[np.where(pos == idx)[0]]
                duplicates[uniques[idx]] = duplicate_lat_lons

            msg = ('reV Cannot currently handle duplicate Resource gids! The '
                   'given latitude and longitudes map to the same gids:\n{}'.
                   format(duplicates))
            logger.error(msg)
            raise RuntimeError(msg)

        gids = gids.tolist()
        logger.debug('- Resource gids:\n{}'.format(gids))

        pp = cls(gids,
                 sam_config,
                 tech=tech,
                 res_file=res_file,
                 curtailment=curtailment)

        if 'points_order' in pp.df:
            lat_lons = lat_lons[pp.df['points_order'].values]

        pp._df['latitude'] = lat_lons[:, 0]
        pp._df['longitude'] = lat_lons[:, 1]

        return pp