Exemplo n.º 1
0
def evidence_run(args):
    # Expanding summits
    chip_summit_regions = GenomicRegionSet("TFBS Summit Regions")
    chip_summit_regions.read(args.chip_file)

    for region in iter(chip_summit_regions):
        summit = int(region.data.split()[-1]) + region.initial
        region.initial = max(summit - (args.peak_ext / 2), 0)
        region.final = summit + (args.peak_ext / 2)

    # Calculating intersections
    mpbs_regions = GenomicRegionSet("MPBS Regions")
    mpbs_regions.read(args.mpbs_file)

    chip_summit_regions.sort()
    mpbs_regions.sort()

    tfbs_regions = GenomicRegionSet("TFBS Regions")

    for mpbs_region in mpbs_regions:
        if chip_summit_regions.include(mpbs_region):
            mpbs_region.name = mpbs_region.name.split(":")[0] + ":Y"
        else:
            mpbs_region.name = mpbs_region.name.split(":")[0] + ":N"
        tfbs_regions.add(mpbs_region)

    tfbs_regions.sort()

    tfbs_fname = os.path.join(args.output_location,
                              "{}.bed".format(args.output_prefix))
    tfbs_regions.write(tfbs_fname)
Exemplo n.º 2
0
    def create_file(self):
        # Expanding summits
        tfbs_summit_regions = GenomicRegionSet("TFBS Summit Regions")
        tfbs_summit_regions.read_bed(self.tfbs_summit_fname)

        for region in iter(tfbs_summit_regions):
            summit = int(region.data.split()[-1]) + region.initial
            region.initial = max(summit - (self.peak_ext / 2), 0)
            region.final = summit + (self.peak_ext / 2)

        # Calculating intersections
        mpbs_regions = GenomicRegionSet("MPBS Regions")
        mpbs_regions.read_bed(self.mpbs_fname)

        tfbs_summit_regions.sort()
        mpbs_regions.sort()

        with_overlap_regions = mpbs_regions.intersect(tfbs_summit_regions, mode=OverlapType.ORIGINAL)
        without_overlap_regions = mpbs_regions.subtract(tfbs_summit_regions, whole_region=True)
        tfbs_regions = GenomicRegionSet("TFBS Regions")

        for region in iter(with_overlap_regions):
            region.name = region.name.split(":")[0] + ":Y"
            tfbs_regions.add(region)

        for region in iter(without_overlap_regions):
            region.name = region.name.split(":")[0] + ":N"
            tfbs_regions.add(region)

        tfbs_regions.sort()

        tfbs_fname = os.path.join(self.output_location, "{}.bed".format(self.mpbs_name))
        tfbs_regions.write_bed(tfbs_fname)
Exemplo n.º 3
0
def fisher_table(motif_name, regions, mpbs, gene_set=False, mpbs_set=False):
    """
    TODO

    Keyword arguments:
    motif_name -- TODO
    regions -- TODO
    mpbs -- TODO
    gene_set -- TODO
    mpbs_set -- TODO

    Return:
    a -- TODO
    b -- TODO
    gene_set -- TODO
    mpbs_set -- TODO
    """

    # Fetching motif
    mpbs_motif = GenomicRegionSet(name="mpbs_motif")
    for region in mpbs.sequences:
        if motif_name in region.name:
            mpbs_motif.add(region)

    # Performing intersections
    if len(mpbs_motif) > 0:
        # regions which are overlapping with mpbs_motif
        intersect_original = regions.intersect(mpbs_motif, mode=OverlapType.ORIGINAL, rm_duplicates=True)
        # regions which are not overlapping with regions from mpbs_motif
        subtract_overlap = regions.subtract(mpbs_motif, whole_region=True)

        # Fetching genes
        if gene_set:
            gene_set_res = GeneSet(motif_name)
            for genomic_region in intersect_original.sequences:
                if genomic_region.name:
                    gene_list = [e if e[0] != "." else e[1:] for e in genomic_region.name.split(":")]
                    for g in gene_list:
                        gene_set_res.genes.append(g)
            gene_set_res.genes = list(set(gene_set_res.genes))  # Keep only unique genes
        else:
            gene_set_res = None

        # Fetching mpbs
        if mpbs_set:
            mpbs_set_res = mpbs_motif.intersect(regions, mode=OverlapType.ORIGINAL, rm_duplicates=True)
        else:
            mpbs_set_res = None

        return len(intersect_original), len(subtract_overlap), gene_set_res, mpbs_set_res

    else:
        gene_set_res = GeneSet(motif_name) if gene_set else None
        mpbs_set_res = GenomicRegionSet(mpbs_motif.name) if mpbs_set else None

        return 0, len(regions), gene_set_res, mpbs_set_res
Exemplo n.º 4
0
def intersect(gnrsA, gnrsB, overlap_type):
    # Convert to ctypes
    lenA = len(gnrsA)
    lenB = len(gnrsB)
    lenR = min(lenA, lenB)

    chromsA_python = [gr.chrom for gr in gnrsA.sequences]
    chromsA_c = (c_char_p * lenA)(*chromsA_python)

    chromsB_python = [gr.chrom for gr in gnrsB.sequences]
    chromsB_c = (c_char_p * lenB)(*chromsB_python)

    initialsA_python = [gr.initial for gr in gnrsA.sequences]
    initialsA_c = (c_int * lenA)(*initialsA_python)

    initialsB_python = [gr.initial for gr in gnrsB.sequences]
    initialsB_c = (c_int * lenB)(*initialsB_python)

    finalsA_python = [gr.final for gr in gnrsA.sequences]
    finalsA_c = (c_int * lenA)(*finalsA_python)

    finalsB_python = [gr.final for gr in gnrsB.sequences]
    finalsB_c = (c_int * lenB)(*finalsB_python)

    indices_c = POINTER(c_int)((c_int * lenR)())
    initialsR_c = POINTER(c_int)((c_int * lenR)())
    finalsR_c = POINTER(c_int)((c_int * lenR)())
    sizeR_c = c_int()

    # Call C-function
    if overlap_type == 0:
        intersect_overlap_c(chromsA_c, initialsA_c, finalsA_c, lenA, chromsB_c,
                            initialsB_c, finalsB_c, lenB, pointer(indices_c),
                            pointer(initialsR_c), pointer(finalsR_c),
                            byref(sizeR_c))
    elif overlap_type == 1:
        intersect_original_c(chromsA_c, initialsA_c, finalsA_c, lenA,
                             chromsB_c, initialsB_c, finalsB_c, lenB,
                             pointer(indices_c), pointer(initialsR_c),
                             pointer(finalsR_c), byref(sizeR_c))
    elif overlap_type == 2:
        intersect_completely_included_c(chromsA_c, initialsA_c, finalsA_c,
                                        lenA, chromsB_c, initialsB_c,
                                        finalsB_c, lenB, pointer(indices_c),
                                        pointer(initialsR_c),
                                        pointer(finalsR_c), byref(sizeR_c))

    result = GenomicRegionSet(gnrsA.name)
    for i in range(sizeR_c.value):
        result.add(
            GenomicRegion(chromsA_python[indices_c[i]], initialsR_c[i],
                          finalsR_c[i]))

    return result
Exemplo n.º 5
0
def initialize(name, dims, genome_path, regions, stepsize, binsize, bamfiles, exts, \
               inputs, exts_inputs, factors_inputs, chrom_sizes, verbose, no_gc_content, \
               tracker, debug, norm_regions, scaling_factors_ip, save_wig, housekeeping_genes):
    """Initialize the MultiCoverageSet"""

    regionset = GenomicRegionSet(name)
    chrom_sizes_dict = {}
    #if regions option is set, take the values, otherwise the whole set of 
    #chromosomes as region to search for DPs
    if regions is not None:
        print("Call DPs on specified regions.", file=sys.stderr)
        with open(regions) as f:
            for line in f:
                line = line.strip()
                line = line.split('\t')
                c, s, e = line[0], int(line[1]), int(line[2])
                regionset.add(GenomicRegion(chrom=c, initial=s, final=e))
                chrom_sizes_dict[c] = e
    else:
        print("Call DPs on whole genome.", file=sys.stderr)
        with open(chrom_sizes) as f:
            for line in f:
                line = line.strip()
                line = line.split('\t')
                chrom, end = line[0], int(line[1])
                regionset.add(GenomicRegion(chrom=chrom, initial=0, final=end))
                chrom_sizes_dict[chrom] = end
    
    if norm_regions:
        norm_regionset = GenomicRegionSet('norm_regions')
        norm_regionset.read_bed(norm_regions)
    else:
        norm_regionset = None
        
    if housekeeping_genes:
        scaling_factors_ip, _ = norm_gene_level(bamfiles, housekeeping_genes, name, verbose=True)
    
    if scaling_factors_ip:
        tracker.write(text=map(lambda x: str(x), scaling_factors_ip), header="Scaling factors")
    
    regionset.sequences.sort()
    exts, exts_inputs = _compute_extension_sizes(bamfiles, exts, inputs, exts_inputs, verbose)
    tracker.write(text=str(exts).strip('[]'), header="Extension size (rep1, rep2, input1, input2)")
    
    multi_cov_set = MultiCoverageSet(name=name, regions=regionset, dims=dims, genome_path=genome_path, binsize=binsize, stepsize=stepsize,rmdup=True,\
                                  path_bamfiles = bamfiles, path_inputs = inputs, exts = exts, exts_inputs = exts_inputs, factors_inputs = factors_inputs, \
                                  chrom_sizes=chrom_sizes, verbose=verbose, no_gc_content=no_gc_content, chrom_sizes_dict=chrom_sizes_dict, debug=debug, \
                                  norm_regionset=norm_regionset, scaling_factors_ip=scaling_factors_ip, save_wig=save_wig)
    
    return multi_cov_set
Exemplo n.º 6
0
def merge_delete(ext_size, merge, peak_list, pvalue_list):
    #     peaks_gain = read_diffpeaks(path)

    regions_plus = GenomicRegionSet('regions')  #pot. mergeable
    regions_minus = GenomicRegionSet('regions')  #pot. mergeable
    regions_unmergable = GenomicRegionSet('regions')
    last_orientation = ""

    for i, t in enumerate(peak_list):
        chrom, start, end, c1, c2, strand, ratio = t[0], t[1], t[2], t[3], t[
            4], t[5], t[6]
        r = GenomicRegion(chrom = chrom, initial = start, final = end, name = '', \
                          orientation = strand, data = str((c1, c2, pvalue_list[i], ratio)))
        if end - start > ext_size:
            if strand == '+':
                if last_orientation == '+':
                    region_plus.add(r)
                else:
                    regions_unmergable.add(r)
            elif strand == '-':
                if last_orientation == '-':
                    region_mins.add(r)
                else:
                    regions_unmergable.add(r)

    if merge:
        regions_plus.extend(ext_size / 2, ext_size / 2)
        regions_plus.merge()
        regions_plus.extend(-ext_size / 2, -ext_size / 2)
        merge_data(regions_plus)

        regions_minus.extend(ext_size / 2, ext_size / 2)
        regions_minus.merge()
        regions_minus.extend(-ext_size / 2, -ext_size / 2)
        merge_data(regions_minus)

    results = GenomicRegionSet('regions')
    for el in regions_plus:
        results.add(el)
    for el in regions_minus:
        results.add(el)
    for el in regions_unmergable:
        results.add(el)
    results.sort()

    return results
Exemplo n.º 7
0
def merge_delete(ext_size, merge, peak_list, pvalue_list):
#     peaks_gain = read_diffpeaks(path)
    
    regions_plus = GenomicRegionSet('regions') #pot. mergeable
    regions_minus = GenomicRegionSet('regions') #pot. mergeable
    regions_unmergable = GenomicRegionSet('regions')
    last_orientation = ""
    
    for i, t in enumerate(peak_list):
        chrom, start, end, c1, c2, strand, ratio = t[0], t[1], t[2], t[3], t[4], t[5], t[6]
        r = GenomicRegion(chrom = chrom, initial = start, final = end, name = '', \
                          orientation = strand, data = str((c1, c2, pvalue_list[i], ratio)))
        if end - start > ext_size:
            if strand == '+':
                if last_orientation == '+':
                    region_plus.add(r)
                else:
                    regions_unmergable.add(r)
            elif strand == '-':
                if last_orientation == '-':
                    region_mins.add(r)
                else:
                    regions_unmergable.add(r)
                    
                    
    if merge:
        regions_plus.extend(ext_size/2, ext_size/2)
        regions_plus.merge()
        regions_plus.extend(-ext_size/2, -ext_size/2)
        merge_data(regions_plus)
        
        regions_minus.extend(ext_size/2, ext_size/2)
        regions_minus.merge()
        regions_minus.extend(-ext_size/2, -ext_size/2)
        merge_data(regions_minus)
    
    results = GenomicRegionSet('regions')
    for el in regions_plus:
        results.add(el)
    for el in regions_minus:
        results.add(el)
    for el in regions_unmergable:
        results.add(el)
    results.sort()
    
    return results
Exemplo n.º 8
0
    def get_training_regionset(self):
        r = GenomicRegionSet('')
        r.add(self.regionset[self.counter])

        if self.counter == len(self.chrom_sizes_dict):
            return None
        else:
            self.counter += 1
            return r


#if regions option is set, take the values, otherwise the whole set of
#chromosomes as region to search for DPs
#     if test:
#         contained_chrom = ['chr1', 'chr2']
#     else:
#         #contained_chrom = get_all_chrom(bamfiles)
#         contained_chrom = ['chr1', 'chr2']
Exemplo n.º 9
0
def initialize(name, dims, genome_path, regions, stepsize, binsize, bamfiles, exts, \
               inputs, exts_inputs, factors_inputs, chrom_sizes, verbose, no_gc_content, \
               tracker, debug, norm_regions, scaling_factors_ip, save_wig):
    """Initialize the MultiCoverageSet"""

    regionset = GenomicRegionSet(name)
    chrom_sizes_dict = {}
    #if regions option is set, take the values, otherwise the whole set of 
    #chromosomes as region to search for DPs
    if regions is not None:
        print("Call DPs on specified regions.", file=sys.stderr)
        with open(regions) as f:
            for line in f:
                line = line.strip()
                line = line.split('\t')
                c, s, e = line[0], int(line[1]), int(line[2])
                regionset.add(GenomicRegion(chrom=c, initial=s, final=e))
                chrom_sizes_dict[c] = e
    else:
        print("Call DPs on whole genome.", file=sys.stderr)
        with open(chrom_sizes) as f:
            for line in f:
                line = line.strip()
                line = line.split('\t')
                chrom, end = line[0], int(line[1])
                regionset.add(GenomicRegion(chrom=chrom, initial=0, final=end))
                chrom_sizes_dict[chrom] = end
    
    if norm_regions:
        norm_regionset = GenomicRegionSet('norm_regions')
        norm_regionset.read_bed(norm_regions)
    else:
        norm_regionset = None
    
    regionset.sequences.sort()
    exts, exts_inputs = _compute_extension_sizes(bamfiles, exts, inputs, exts_inputs, verbose)
    tracker.write(text=str(exts).strip('[]'), header="Extension size (rep1, rep2, input1, input2)")
    
    multi_cov_set = MultiCoverageSet(name=name, regions=regionset, dims=dims, genome_path=genome_path, binsize=binsize, stepsize=stepsize,rmdup=True,\
                                  path_bamfiles = bamfiles, path_inputs = inputs, exts = exts, exts_inputs = exts_inputs, factors_inputs = factors_inputs, \
                                  chrom_sizes=chrom_sizes, verbose=verbose, no_gc_content=no_gc_content, chrom_sizes_dict=chrom_sizes_dict, debug=debug, \
                                  norm_regionset=norm_regionset, scaling_factors_ip=scaling_factors_ip, save_wig=save_wig)
    
    return multi_cov_set
Exemplo n.º 10
0
    def get_training_regionset(self):
        r = GenomicRegionSet('')
        r.add(self.regionset[self.counter])
        
        if self.counter == len(self.chrom_sizes_dict):
            return None
        else:
            self.counter += 1
            return r
        
            
            
#if regions option is set, take the values, otherwise the whole set of 
    #chromosomes as region to search for DPs
#     if test:
#         contained_chrom = ['chr1', 'chr2']
#     else:
#         #contained_chrom = get_all_chrom(bamfiles)
#         contained_chrom = ['chr1', 'chr2']
Exemplo n.º 11
0
def rna_associated_gene(rna_regions, name, organism):
    if rna_regions:
        s = [ rna_regions[0][0], min([e[1] for e in rna_regions]), 
              max([e[2] for e in rna_regions]), rna_regions[0][3] ]
        g = GenomicRegionSet("RNA associated genes")
        g.add( GenomicRegion(chrom=s[0], initial=s[1], final=s[2], name=name, orientation=s[3]) )
        asso_genes = g.gene_association(organism=organism, promoterLength=1000, show_dis=True)

        genes = asso_genes[0].name.split(":")
        closest_genes = []
        for n in genes:
            if name not in n: closest_genes.append(n)
        closest_genes = set(closest_genes)

        if len(closest_genes) == 0:
            return "."
        else:
            return ":".join(closest_genes)
    else:
        return "."
Exemplo n.º 12
0
    def create_file(self):
        # Expanding summits
        tfbs_summit_regions = GenomicRegionSet("TFBS Summit Regions")
        tfbs_summit_regions.read_bed(self.tfbs_summit_fname)

        for region in iter(tfbs_summit_regions):
            summit = int(region.data.split()[-1]) + region.initial
            region.initial = max(summit - (self.peak_ext / 2), 0)
            region.final = summit + (self.peak_ext / 2)

        # Calculating intersections
        mpbs_regions = GenomicRegionSet("MPBS Regions")
        mpbs_regions.read_bed(self.mpbs_fname)

        tfbs_summit_regions.sort()
        mpbs_regions.sort()

        with_overlap_regions = mpbs_regions.intersect(
            tfbs_summit_regions, mode=OverlapType.ORIGINAL)
        without_overlap_regions = mpbs_regions.subtract(tfbs_summit_regions,
                                                        whole_region=True)
        tfbs_regions = GenomicRegionSet("TFBS Regions")

        for region in iter(with_overlap_regions):
            region.name = region.name.split(":")[0] + ":Y"
            tfbs_regions.add(region)

        for region in iter(without_overlap_regions):
            region.name = region.name.split(":")[0] + ":N"
            tfbs_regions.add(region)

        tfbs_regions.sort()

        tfbs_fname = os.path.join(self.output_location,
                                  "{}.bed".format(self.mpbs_name))
        tfbs_regions.write_bed(tfbs_fname)
Exemplo n.º 13
0
def chip_evaluate(args):
    # Evaluate Statistics
    fpr = dict()
    tpr = dict()
    roc_auc_1 = dict()
    roc_auc_10 = dict()
    roc_auc_50 = dict()
    roc_auc_100 = dict()
    recall = dict()
    precision = dict()
    prc_auc_1 = dict()
    prc_auc_10 = dict()
    prc_auc_50 = dict()
    prc_auc_100 = dict()

    footprint_file = args.footprint_file.split(",")
    footprint_name = args.footprint_name.split(",")
    footprint_type = args.footprint_type.split(",")

    max_score = 0
    if "SEG" in footprint_type:
        mpbs_regions = GenomicRegionSet("TFBS")
        mpbs_regions.read(args.tfbs_file)

        # Verifying the maximum score of the MPBS file
        for region in iter(mpbs_regions):
            score = int(region.data.split("\t")[0])
            if score > max_score:
                max_score = score
        max_score += 1

    max_points = []
    for i in range(len(footprint_file)):
        footprints_regions = GenomicRegionSet("Footprints Prediction")
        footprints_regions.read(footprint_file[i])
        footprints_regions.sort()

        if footprint_type[i] == "SEG":
            # Increasing the score of MPBS entry once if any overlaps found in the predicted footprints.
            increased_score_mpbs_regions = GenomicRegionSet("Increased Regions")
            intersect_regions = mpbs_regions.intersect(footprints_regions, mode=OverlapType.ORIGINAL)
            for region in iter(intersect_regions):
                region.data = str(int(region.data.split("\t")[0]) + max_score)
                increased_score_mpbs_regions.add(region)

            # Keep the score of remained MPBS entry unchanged
            without_intersect_regions = mpbs_regions.subtract(footprints_regions, whole_region=True)
            for region in iter(without_intersect_regions):
                increased_score_mpbs_regions.add(region)

            increased_score_mpbs_regions.sort_score()

            fpr[i], tpr[i], roc_auc_1[i], roc_auc_10[i], roc_auc_50[i], roc_auc_100[i] = \
                roc_curve(increased_score_mpbs_regions)
            recall[i], precision[i], prc_auc_1[i], prc_auc_10[i], prc_auc_50[i], prc_auc_100[i] = \
                precision_recall_curve(increased_score_mpbs_regions)

            max_points.append(len(intersect_regions))

        elif footprint_type[i] == "SC":
            footprints_regions.sort_score()
            fpr[i], tpr[i], roc_auc_1[i], roc_auc_10[i], roc_auc_50[i], roc_auc_100[i] = \
                roc_curve(footprints_regions)
            recall[i], precision[i], prc_auc_1[i], prc_auc_10[i], prc_auc_50[i], prc_auc_100[i] = \
                precision_recall_curve(footprints_regions)

            max_points.append(len(footprints_regions))

    # Output the statistics results into text
    stats_fname = os.path.join(args.output_location, "{}_stats.txt".format(args.output_prefix))
    stats_header = ["METHOD", "AUC_100", "AUC_50", "AUC_10", "AUC_1", "AUPR_100", "AUPR_50", "AUPR_10", "AUPR_1"]
    with open(stats_fname, "w") as stats_file:
        stats_file.write("\t".join(stats_header) + "\n")
        for i in range(len(footprint_name)):
            stats_file.write(footprint_name[i] + "\t" +
                             str(roc_auc_100[i]) + "\t" + str(roc_auc_50[i]) + "\t" + str(roc_auc_10[i]) + "\t" +
                             str(roc_auc_1[i]) + "\t" + str(prc_auc_100[i]) + "\t" + str(prc_auc_50[i]) + "\t" +
                             str(prc_auc_10[i]) + "\t" + str(prc_auc_1[i]) + "\n")

    # Output the curves
    if args.print_roc_curve:
        label_x = "False Positive Rate"
        label_y = "True Positive Rate"
        curve_name = "ROC"
        plot_curve(footprint_name, args.output_location, fpr, tpr, roc_auc_100, label_x, label_y, args.output_prefix,
                   curve_name, max_points=max_points)
    if args.print_pr_curve:
        label_x = "Recall"
        label_y = "Precision"
        curve_name = "PRC"
        plot_curve(footprint_name, args.output_location, recall, precision, prc_auc_100, label_x, label_y,
                   args.output_prefix, curve_name, max_points=max_points)

    output_points(footprint_name, args.output_location, args.output_prefix, fpr, tpr, recall, precision)
Exemplo n.º 14
0
 def __iter__(self):
     for el in self.regionset:
         tmp = GenomicRegionSet('')
         tmp.add(el)
         yield tmp
Exemplo n.º 15
0
        print("output:\t" + args.o)
        print("organism:\t" + args.organism)
        gene = GenomicRegionSet("genes")
        ### Input BED file
        if args.i.endswith(".bed"):
            gene.read_bed(args.i)
            promoter = GenomicRegionSet("promoter")

            promoterLength = int(args.l)

            for s in gene:
                if s.orientation == "+": 
                    s.initial, s.final = max(s.initial-promoterLength, 0), s.initial

                else: s.initial, s.final = s.final, s.final+promoterLength
                promoter.add(s)
        ### Input gene list
        else:
            ann = AnnotationSet(gene_source=args.organism, alias_source=args.organism,
                                filter_havana=False, protein_coding=False, known_only=False)
            de_gene = GeneSet("de genes")
            de_gene.read(args.i)
            print(len(de_gene))
            promoter = ann.get_promoters(promoterLength=args.l, gene_set=de_gene, unmaplist=False)
            #print(len(de_prom))

        
        #print(len(promoter))
        promoter.write_bed(args.o)

Exemplo n.º 16
0
    ints = [gr.initial for gr in gnrsB.sequences]
    initialsB = (c_int * len(ints))(*ints)

    ints = [gr.final for gr in gnrsA.sequences]
    finalsA = (c_int * len(ints))(*ints)

    ints = [gr.final for gr in gnrsB.sequences]
    finalsB = (c_int * len(ints))(*ints)

    # Call C-function
    return jaccardC(chromsA, initialsA, finalsA, len(gnrsA), chromsB,
                    initialsB, finalsB, len(gnrsB))


set1 = GenomicRegionSet("A")
set1.add(GenomicRegion("chr1", 0, 10))
set1.add(GenomicRegion("chr1", 15, 20))
set1.add(GenomicRegion("chr1", 30, 45))
print(set1.sequences)
set2 = GenomicRegionSet("B")
set2.add(GenomicRegion("chr1", 0, 5))
set2.add(GenomicRegion("chr1", 10, 25))
set2.add(GenomicRegion("chr1", 35, 45))
print(set2.sequences)

jaccard2 = jaccardIndex(set1, set2)
print("jaccard2", jaccard2)


def intersect(gnrsA, gnrsB, overlap_type):
    # Convert to ctypes
Exemplo n.º 17
0
def initialize(name, genome_path, regions, stepsize, binsize, bam_file_1, bam_file_2, ext_1, ext_2, \
               input_1, input_factor_1, ext_input_1, input_2, input_factor_2, ext_input_2, chrom_sizes, verbose, norm_strategy, no_gc_content, deadzones,\
               factor_input_1, factor_input_2, debug, tracker):

    regionset = GenomicRegionSet(name)
    chrom_sizes_dict = {}
    #if regions option is set, take the values, otherwise the whole set of
    #chromosomes as region to search for DPs
    if regions is not None:
        with open(regions) as f:
            for line in f:
                line = line.strip()
                line = line.split('\t')
                c, s, e = line[0], int(line[1]), int(line[2])
                regionset.add(GenomicRegion(chrom=c, initial=s, final=e))
                chrom_sizes_dict[c] = e
    else:
        with open(chrom_sizes) as f:
            for line in f:
                line = line.strip()
                line = line.split('\t')
                chrom, end = line[0], int(line[1])
                regionset.add(GenomicRegion(chrom=chrom, initial=0, final=end))
                chrom_sizes_dict[chrom] = end

    regionset.sequences.sort()

    start = 0
    end = 600
    ext_stepsize = 5
    #TODO: maybe for-loops?
    #compute extension size
    if [ext_1, ext_2, ext_input_1, ext_input_2].count(None) > 0:
        print("Computing read extension sizes...", file=sys.stderr)
    if ext_1 is None:
        ext_1, values_1 = get_extension_size(bam_file_1,
                                             start=start,
                                             end=end,
                                             stepsize=ext_stepsize)
    print("Read extension for first file: %s" % ext_1, file=sys.stderr)

    if ext_2 is None:
        ext_2, values_2 = get_extension_size(bam_file_2,
                                             start=start,
                                             end=end,
                                             stepsize=ext_stepsize)
    print("Read extension for second file: %s" % ext_2, file=sys.stderr)

    if input_1 is not None and ext_input_1 is None:
        ext_input_1, values_input_1 = get_extension_size(input_1,
                                                         start=start,
                                                         end=end,
                                                         stepsize=ext_stepsize)
    print("Read extension for first input file: %s" % ext_input_1,
          file=sys.stderr)

    if input_1 is not None and input_2 is not None and input_1 == input_2 and 'ext_input_1' in locals(
    ) and 'values_input_1' in locals():
        ext_input_2, values_input_2 = ext_input_1, values_input_1
    elif input_2 is not None and ext_input_2 is None:
        ext_input_2, values_input_2 = get_extension_size(input_2,
                                                         start=start,
                                                         end=end,
                                                         stepsize=ext_stepsize)
    print("Read extension for second input file: %s" % ext_input_2,
          file=sys.stderr)

    tracker.write(text=str(ext_1) + "," + str(ext_2),
                  header="Extension size IP1, IP2")
    if input_1 is not None and input_2 is not None:
        tracker.write(text=str(ext_input_1) + "," + str(ext_input_2),
                      header="Extension size Control1, Control2")

    if verbose:
        if 'values_1' in locals() and values_1 is not None:
            with open(name + '-read-ext-1', 'w') as f:
                for v, i in values_1:
                    print(i, v, sep='\t', file=f)

        if 'values_2' in locals() and values_2 is not None:
            with open(name + '-read-ext-2', 'w') as f:
                for v, i in values_2:
                    print(i, v, sep='\t', file=f)

        if 'values_input_1' in locals() and values_input_1 is not None:
            with open(name + '-read-ext-input-1', 'w') as f:
                for v, i in values_input_1:
                    print(i, v, sep='\t', file=f)

        if 'values_input_2' in locals() and values_input_2 is not None:
            with open(name + '-read-ext-input-2', 'w') as f:
                for v, i in values_input_2:
                    print(i, v, sep='\t', file=f)

    cov_cdp_mpp = DualCoverageSet(name=name, region=regionset, genome_path=genome_path, binsize=binsize, stepsize=stepsize,rmdup=True,\
                                  file_1=bam_file_1, ext_1=ext_1,\
                                  file_2=bam_file_2, ext_2=ext_2, \
                                  input_1=input_1, ext_input_1=ext_input_1, input_factor_1=input_factor_1, \
                                  input_2=input_2, ext_input_2=ext_input_2, input_factor_2=input_factor_2, \
                                  chrom_sizes=chrom_sizes, verbose=verbose, norm_strategy=norm_strategy, no_gc_content=no_gc_content, deadzones=deadzones,\
                                  factor_input_1=factor_input_1, factor_input_2=factor_input_2, chrom_sizes_dict=chrom_sizes_dict, debug=debug, tracker=tracker)

    return cov_cdp_mpp, [ext_1, ext_2]
Exemplo n.º 18
0
 def __iter__(self):
     for el in self.regionset:
         tmp = GenomicRegionSet('')
         tmp.add(el)
         yield tmp
Exemplo n.º 19
0
def dbd_regions(exons, sig_region, rna_name, output,out_file=False, temp=None, fasta=True):
    """Generate the BED file of significant DBD regions and FASTA file of the sequences"""
    if len(sig_region) == 0:
        return
    #print(self.rna_regions)
    if not exons:
        pass
    else:
        dbd = GenomicRegionSet("DBD")
        dbdmap = {}
        if len(exons) == 1:
            print("## Warning: No information of exons in the given RNA sequence, the DBD position may be problematic. ")
        for rbs in sig_region:
            loop = True

            if exons[0][3] == "-":
                while loop:
                    cf = 0
                    for exon in exons:
                        #print(exon)

                        l = abs(exon[2] - exon[1])
                        tail = cf + l

                        if cf <= rbs.initial <=  tail:
                            dbdstart = exon[2] - rbs.initial + cf
                            
                            if rbs.final <= tail: 
                                #print("1")
                                dbdend = exon[2] - rbs.final + cf
                                if dbdstart > dbdend: dbdstart, dbdend = dbdend, dbdstart
                                dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                       initial=dbdstart, final=dbdend, 
                                                       orientation=exons[0][3], 
                                                       name=str(rbs.initial)+"-"+str(rbs.final) ) )
                                dbdmap[str(rbs)] = dbd[-1].toString() + " strand:-"
                                loop = False
                                break
                            elif rbs.final > tail:

                                subtract = l + cf - rbs.initial
                                #print("2")
                                #print("Subtract: "+str(subtract))
                                if dbdstart > exon[1]: dbdstart, exon[1] = exon[1], dbdstart
                                dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                       initial=dbdstart, final=exon[1], 
                                                       orientation=exons[0][3], 
                                                       name=str(rbs.initial)+"-"+str(rbs.initial+subtract)+"_split1" ) )
                        
                        elif rbs.initial < cf and rbs.final <= tail: 
                            #print("3")
                            dbdstart = exon[2]
                            dbdend = exon[2] - rbs.final + rbs.initial + subtract
                            if dbdstart > dbdend: dbdstart, dbdend = dbdend, dbdstart
                            dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                   initial=dbdstart, final=dbdend, 
                                                   orientation=exons[0][3], 
                                                   name=str(cf)+"-"+str(rbs.final)+"_split2" ) )
                            dbdmap[str(rbs)] = dbd[-2].toString() + " & " + dbd[-1].toString() + " strand:-"
                            loop = False
                            break

                        elif rbs.initial > tail:
                            pass

                        cf += l
                        
                    loop = False
            else:

                while loop:
                    cf = 0
                    for exon in exons:
                        #print(exon)
                        l = exon[2] - exon[1]
                        tail = cf + l
                        #print("cf:   " + str(cf))
                        #print("tail: " + str(tail) )
                        if cf <= rbs.initial <=  tail:
                            dbdstart = exon[1] + rbs.initial - cf
                            
                            if rbs.final <= tail: 
                                #print("1")
                                dbdend = exon[1] + rbs.final -cf
                                dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                       initial=dbdstart, final=dbdend, 
                                                       orientation=exons[0][3], 
                                                       name=str(rbs.initial)+"-"+str(rbs.final) ) )
                                dbdmap[str(rbs)] = dbd[-1].toString() + " strand:+"
                                loop = False
                                break
                            elif rbs.final > tail:

                                subtract = l + cf - rbs.initial
                                #print("2")
                                #print("Subtract: "+str(subtract))
                                dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                       initial=dbdstart, final=exon[2], 
                                                       orientation=exons[0][3], 
                                                       name=str(rbs.initial)+"-"+str(rbs.initial+subtract)+"_split1" ) )

                        elif rbs.initial < cf and rbs.final <= tail: 
                            #print("3")
                            dbdstart = exon[1]
                            dbdend = exon[1] + rbs.final - rbs.initial - subtract
                            dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                   initial=dbdstart, final=dbdend, 
                                                   orientation=exons[0][3], 
                                                   name=str(cf)+"-"+str(rbs.final)+"_split2" ) )
                            dbdmap[str(rbs)] = dbd[-2].toString() + " & " + dbd[-1].toString() + " strand:+"
                            loop = False
                            break

                        elif rbs.initial > tail:
                            pass

                        cf += l
                        
                    loop = False
        if not out_file:
            dbd.write_bed(filename=os.path.join(output, "DBD_"+rna_name+".bed"))
        else:
            # print(dbd)
            # print(dbd.sequences[0])
            dbd.write_bed(filename=output)
    # FASTA
    if fasta:
        #print(dbdmap)
        if not out_file:
            seq = pysam.Fastafile(os.path.join(output,"rna_temp.fa"))
            fasta_f = os.path.join(output, "DBD_"+rna_name+".fa")
        else:
            seq = pysam.Fastafile(os.path.join(temp,"rna_temp.fa"))
            fasta_f = output+".fa"

        with open(fasta_f, 'w') as fasta:
            for rbs in sig_region:
                print(">"+ rna_name +":"+str(rbs.initial)+"-"+str(rbs.final), file=fasta)
                s = seq.fetch(rbs.chrom, max(0, rbs.initial), rbs.final)
                for ss in [s[i:i + 80] for i in range(0, len(s), 80)]:
                    print(ss, file=fasta)
Exemplo n.º 20
0
    def chip_evaluate(self):
        """
        This evaluation methodology uses motif-predicted binding sites (MPBSs) together with TF ChIP-seq data
        to evaluate the footprint predictions.

        return:
        """

        # Evaluate Statistics
        fpr = dict()
        tpr = dict()
        roc_auc = dict()
        roc_auc_1 = dict()
        roc_auc_2 = dict()
        recall = dict()
        precision = dict()
        prc_auc = dict()

        if "SEG" in self.footprint_type:
            mpbs_regions = GenomicRegionSet("TFBS")
            mpbs_regions.read_bed(self.tfbs_file)
            mpbs_regions.sort()

            # Verifying the maximum score of the MPBS file
            max_score = -99999999
            for region in iter(mpbs_regions):
                score = int(region.data)
                if score > max_score:
                    max_score = score
            max_score += 1

        for i in range(len(self.footprint_file)):
            footprints_regions = GenomicRegionSet("Footprints Prediction")
            footprints_regions.read_bed(self.footprint_file[i])

            # Sort footprint prediction bed files
            footprints_regions.sort()

            if self.footprint_type[i] == "SEG":
                # Increasing the score of MPBS entry once if any overlaps found in the predicted footprints.
                increased_score_mpbs_regions = GenomicRegionSet("Increased Regions")
                intersect_regions = mpbs_regions.intersect(footprints_regions, mode=OverlapType.ORIGINAL)
                for region in iter(intersect_regions):
                    region.data = str(int(region.data) + max_score)
                    increased_score_mpbs_regions.add(region)


                # Keep the score of remained MPBS entry unchanged
                without_intersect_regions = mpbs_regions.subtract(footprints_regions, whole_region=True)
                for region in iter(without_intersect_regions):
                    increased_score_mpbs_regions.add(region)

                increased_score_mpbs_regions.sort_score()

                fpr[i], tpr[i], roc_auc[i], roc_auc_1[i], roc_auc_2[i] = self.roc_curve(increased_score_mpbs_regions)
                recall[i], precision[i], prc_auc[i] = self.precision_recall_curve(increased_score_mpbs_regions)
            elif self.footprint_type[i] == "SC":
                footprints_regions.sort_score()
                fpr[i], tpr[i], roc_auc[i], roc_auc_1[i], roc_auc_2[i] = self.roc_curve(footprints_regions)
                recall[i], precision[i], prc_auc[i] = self.precision_recall_curve(footprints_regions)

        # Output the statistics results into text
        stats_fname = self.output_location + self.tf_name + "_stats.txt"
        stats_header = ["METHOD", "AUC_100", "AUC_10", "AUC_1", "AUPR"]
        with open(stats_fname, "w") as stats_file:
            stats_file.write("\t".join(stats_header) + "\n")
            for i in range(len(self.footprint_name)):
                stats_file.write(self.footprint_name[i] + "\t" + str(roc_auc[i]) + "\t" + str(roc_auc_1[i]) + "\t"
                                 + str(roc_auc_2[i]) + "\t" + str(prc_auc[i]) + "\n")

        # Output the curves
        if self.print_roc_curve:
            label_x = "False Positive Rate"
            label_y = "True Positive Rate"
            curve_name = "ROC"
            self.plot_curve(fpr, tpr, roc_auc, label_x, label_y, self.tf_name, curve_name)
        if self.print_pr_curve:
            label_x = "Recall"
            label_y = "Precision"
            curve_name = "PRC"
            self.plot_curve(recall, precision, prc_auc, label_x, label_y, self.tf_name, curve_name)

        self.output_points(self.tf_name, fpr, tpr, recall, precision)
Exemplo n.º 21
0
    def gen_html(self, directory, parameters, obed, align=50, alpha=0.05, score=False):
        """Generate the HTML file"""
        dir_name = os.path.basename(directory)
        html_header = "Genomic Region Test: " + dir_name
        link_ds = OrderedDict()
        link_ds["RNA"] = "index.html"
        link_ds["Sig Target Regions"] = "starget_regions.html"
        link_ds["Target Regions"] = "target_regions.html"
        link_ds["Parameters"] = "parameters.html"

        ##################################################
        # index.html

        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")
        # Plots
        html.add_figure("lineplot_region.png", align="left", width="45%", more_images=["boxplot_regions.png"])
        if self.showdbs:
            html.add_figure("lineplot_dbs.png", align="left", width="45%", more_images=["boxplot_dbs.png"])

        if self.showdbs:
            header_list = [["#", "DBD", "Target Regions", None, "Non-target Regions", None, "Statistics",
                            "Target Regions", "Non-target Regions", None, "Statistics"],
                           ["", "", "with DBS", "without DBS", "with DBS (average)", "s.d.", "<i>p</i>-value",
                            "NO. DBSs", "NO. DBSs (average)", "s.d.", "<i>p</i>-value"]]
            header_titles = [["Rank", "DNA Binding Domain", "Given target regions on DNA", None,
                              "Regions from randomization", None, "Statistics based on target regions",
                              "Given target regions on DNA", "Regions from randomization", None,
                              "Statistics based on DNA Binding Sites"],
                             ["", "",
                              "Number of target regions with DBS binding",
                              "Number of target regions without DBS binding",
                              "Average number of regions from randomization with DBS binding",
                              "Standard deviation", "P value",
                              "Number of related DNA Binding Sites binding to target regions",
                              "Average number of DNA Binding Sites binding to random regions",
                              "Standard deviation", "P-value"]]
            border_list = [" style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:2pt solid gray\"",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:1pt solid gray\""]
        else:
            header_list = [["#", "DBD", "Target Regions", None, "Non-target Regions", None, "Statistics", None],
                           ["", "", "with DBS", "without DBS", "with DBS (average)", "s.d.", "<i>p</i>-value",
                            "z-score"]]
            header_titles = [["Rank", "DNA Binding Domain", "Given target regions on DNA", None,
                              "Regions from randomization", None, "Statistics based on target regions", None],
                             ["", "",
                              "Number of target regions with DBS binding",
                              "Number of target regions without DBS binding",
                              "Average number of regions from randomization with DBS binding",
                              "Standard deviation", "P value", "Z-score"]]
            border_list = [" style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:1pt solid gray\"", ""]

        type_list = 'ssssssssssssssss'
        col_size_list = [50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50]
        data_table = []

        for i, rbs in enumerate(self.rbss):
            if self.data["region"]["p"][i] < alpha:
                p_region = "<font color=\"red\">" + value2str(self.data["region"]["p"][i]) + "</font>"

            else:
                p_region = value2str(self.data["region"]["p"][i])
            zs = (self.counts_tr[rbs][0] - self.data["region"]["ave"][i]) / self.data["region"]["sd"][i]
            new_line = [str(i + 1),
                        rbs.str_rna(pa=False),
                        '<a href="dbd_region.html#' + rbs.str_rna() +
                        '" style="text-align:left">' + str(self.counts_tr[rbs][0]) + '</a>',
                        str(self.counts_tr[rbs][1]),
                        value2str(self.data["region"]["ave"][i]),
                        value2str(self.data["region"]["sd"][i]),
                        p_region,
                        value2str(zs)]
            if self.showdbs:
                if self.data["dbs"]["p"][i] < alpha:
                    p_dbs = "<font color=\"red\">" + value2str(self.data["dbs"]["p"][i]) + "</font>"
                else:
                    p_dbs = value2str(self.data["dbs"]["p"][i])

                new_line += [str(self.counts_dbs[rbs]),
                             value2str(self.data["dbs"]["ave"][i]),
                             value2str(self.data["dbs"]["sd"][i]),
                             p_dbs]
            data_table.append(new_line)

        data_table = natsort.natsorted(data_table, key=lambda x: x[6])
        html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                             auto_width=True, header_titles=header_titles, border_list=border_list, sortable=True)

        html.add_heading("Notes")
        html.add_list(["RNA name: " + self.rna_name,
                       "Randomization is performed for " + str(self.repeats) + " times.",
                       "DBD stands for DNA Binding Domain on RNA.",
                       "DBS stands for DNA Binding Site on DNA."])
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "index.html"))

        #############################################################
        # RNA subpage: Profile of targeted regions for each merged DNA Binding Domain
        #############################################################

        header_list = ["#", "Target Region",
                       "Associated Gene",
                       "No. of DBSs",
                       "DBS coverage"]
        header_titles = ["Rank", "Given target regions from BED files",
                         "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                         "Number of DNA Binding Sites locate within the region",
                         "The proportion of the region covered by DBS binding"]

        #########################################################
        # dbd_region.html
        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")

        for rbsm in self.rbss:
            html.add_heading("DNA Binding Domain: " + rbsm.str_rna(),
                             idtag=rbsm.str_rna())
            data_table = []
            for i, region in enumerate(self.txp.merged_dict[rbsm]):
                # Add information
                data_table.append([str(i + 1),
                                   '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' + self.organism +
                                   "&position=" + region.chrom + "%3A" + str(region.initial) + "-" + str(region.final) +
                                   '" style="text-align:left">' + region.toString(space=True) + '</a>',
                                   split_gene_name(gene_name=region.name, org=self.organism),
                                   str(len(self.region_dbs[region.toString()])),
                                   value2str(self.region_coverage[region.toString()])
                                   ])

            html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                                 auto_width=True, header_titles=header_titles, sortable=True)
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "dbd_region.html"))

        #############################################################
        # Targeted regions centered
        #############################################################

        ##############################################################################################
        # target_regions.html
        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")

        if score:
            header_list = ["#", "Target region", "Associated Gene", "DBSs Count",
                           "DBS coverage", "Score", "Sum of ranks"]
            header_titles = ["Rank",
                             "Target regions loaded from the given BED file",
                             "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                             "Number of DNA Binding Sites within the region",
                             "The proportion of the region covered by DBS binding",
                             "Scores from BED file",
                             "Sum of all the left-hand-side ranks"]
        else:
            header_list = ["#", "Target region", "Associated Gene", "DBSs Count",
                           "DBS coverage", "Sum of ranks"]
            header_titles = ["Rank",
                             "Target regions loaded from the given BED file",
                             "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                             "Number of DNA Binding Sites within the region",
                             "The proportion of the region covered by DBS binding",
                             "Sum of all the left-hand-side ranks"]
        html.add_heading("Target Regions")
        data_table = []

        if not self.dna_region.sorted: self.dna_region.sort()

        # Calculate the ranking
        rank_count = len(self.dna_region) - rank_array([len(self.region_dbs[p.toString()]) for p in self.dna_region])
        rank_coverage = len(self.dna_region) - rank_array([self.region_coverage[p.toString()] for p in self.dna_region])

        if score:
            try:
                score_list = [float(p.data.split("\t")[0]) for p in self.dna_region]
                rank_score = len(self.dna_region) - rank_array([abs(s) for s in score_list])
                rank_sum = [x + y + z for x, y, z in zip(rank_count, rank_coverage, rank_score)]
                # sum_rank = rank_array(rank_sum)  # method='min'
            except ImportError:
                print("There is no score in BED file, please don't use '-score' argument.")
        else:
            rank_sum = [x + y for x, y in zip(rank_count, rank_coverage)]
            sum_rank = rank_array(rank_sum)

        for i, region in enumerate(self.dna_region):
            dbs_counts = str(len(self.region_dbs[region.toString()]))
            dbs_cover = value2str(self.region_coverage[region.toString()])

            newline = [str(i + 1),
                       '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' + self.organism +
                       "&position=" + region.chrom + "%3A" + str(region.initial) + "-" + str(region.final) +
                       '" style="text-align:left">' + region.toString(space=True) + '</a>',
                       split_gene_name(gene_name=region.name, org=self.organism),
                       '<a href="region_dbs.html#' + region.toString() +
                       '" style="text-align:left">' + dbs_counts + '</a>',
                       dbs_cover]

            if score:
                dbs_score = value2str(score_list[i])
                region.data = "\t".join([dbs_counts, dbs_cover, dbs_score, str(rank_sum[i])])
                newline.append(dbs_score)
                newline.append(str(rank_sum[i]))
            else:
                region.data = "\t".join([dbs_counts, dbs_cover, str(rank_sum[i])])
                newline.append(str(rank_sum[i]))
            data_table.append(newline)

        data_table = natsort.natsorted(data_table, key=lambda x: x[-1])
        # data_table = sorted(data_table, key=lambda x: x[-1])
        html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                             auto_width=True, header_titles=header_titles, sortable=True)
        html.add_heading("Notes")
        html.add_list(["All target regions without any bindings are ignored."])
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "target_regions.html"))

        self.dna_region.sort_score()
        self.dna_region.write_bed(os.path.join(directory, obed + "_target_regions.bed"))



        ##############################################################################################
        # starget_regions.html    for significant target regions

        stargets = GenomicRegionSet("sig_targets")
        sig_dbs = {}
        sig_dbs_coverage = {}
        for i, r in enumerate(self.dna_region):
            sig_bindings = self.region_dbs[r.toString()].overlap_rbss(rbss=self.data["region"]["sig_region"])
            dbs = sig_bindings.get_dbs()
            if len(dbs) > 0:
                stargets.add(r)
                m_dbs = dbs.merge(w_return=True)
                sig_dbs[r] = len(dbs)
                # self.promoter["de"]["merged_dbs"][promoter.toString()] = len(m_dbs)
                sig_dbs_coverage[r] = float(m_dbs.total_coverage()) / len(r)

        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")

        # Select promoters in sig DBD
        if len(self.data["region"]["sig_region"]) == 0:
            html.add_heading("There is no significant DBD.")
        else:
            html.add_heading("Target regions bound by significant DBD")
            data_table = []
            # Calculate the ranking
            rank_count = len(stargets) - rank_array([sig_dbs[p] for p in stargets])
            rank_coverage = len(stargets) - rank_array([sig_dbs_coverage[p] for p in stargets])
            if score:
                score_list = [float(p.data.split("\t")[0]) for p in stargets]
                rank_score = len(stargets) - rank_array([abs(s) for s in score_list])
                rank_sum = [x + y + z for x, y, z in zip(rank_count, rank_coverage, rank_score)]
                sum_rank = rank_array(rank_sum)  # method='min'
            else:
                rank_sum = [x + y for x, y in zip(rank_count, rank_coverage)]
                sum_rank = rank_array(rank_sum)

            for i, region in enumerate(stargets):
                dbssount = '<a href="region_dbs.html#' + region.toString() + \
                           '" style="text-align:left">' + str(sig_dbs[region]) + '</a>'

                region_link = region_link_internet(self.organism, region)

                newline = [str(i + 1), region_link,
                           split_gene_name(gene_name=region.name, org=self.organism),
                           dbssount, value2str(sig_dbs_coverage[region]) ]
                if score:
                    dbs_score = value2str(score_list[i])
                    # region.data = "\t".join([dbs_counts, dbs_cover, dbs_score, str(sum_rank[i])])
                    newline.append(dbs_score)
                    newline.append(str(rank_sum[i]))
                    # print([dbs_score, str(sum_rank[i])])
                else:
                    # region.data = "\t".join([dbs_counts, dbs_cover, str(sum_rank[i])])
                    newline.append(str(rank_sum[i]))

                # newline += ["<i>" + str(rank_sum[i]) + "</i>"]
                # print(newline)
                data_table.append(newline)

            # print(data_table)
            # data_table = sorted(data_table, key=lambda x: x[-1])
            data_table = natsort.natsorted(data_table, key=lambda x: x[-1])
            html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                                 header_titles=header_titles, border_list=None, sortable=True)
            html.add_heading("Notes")
            html.add_list(["DBS stands for DNA Binding Site on DNA.",
                           "DBS coverage is the proportion of the region where has potential to form triple helices with the given RNA."])
            html.add_fixed_rank_sortable()
            html.write(os.path.join(directory, "starget_regions.html"))

        ############################
        # Subpages for targeted region centered page
        # region_dbs.html
        header_list = ["RBS", "DBS", "Strand", "Score", "Motif", "Orientation"]

        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")

        for i, region in enumerate(self.dna_region):
            if len(self.region_dbs[region.toString()]) == 0:
                continue
            else:
                html.add_heading("Associated gene: " + split_gene_name(gene_name=region.name, org=self.organism),
                                 idtag=region.toString())
                html.add_free_content(['<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' + self.organism +
                                       "&position=" + region.chrom + "%3A" + str(region.initial) +
                                       "-" + str(region.final) + '" style="margin-left:50">' +
                                       region.toString(space=True) + '</a>'])
                data_table = []
                for rd in self.region_dbs[region.toString()]:
                    rbs = rd.rna.str_rna(pa=False)
                    for rbsm in self.data["region"]["sig_region"]:
                        # rbsm = rbsm.partition(":")[2].split("-")
                        if rd.rna.overlap(rbsm):
                            rbs = "<font color=\"red\">" + rbs + "</font>"
                    data_table.append([rbs,
                                       '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' + self.organism +
                                       "&position=" + rd.dna.chrom + "%3A" + str(rd.dna.initial) + "-" + str(
                                           rd.dna.final) +
                                       '" style="text-align:left">' + rd.dna.toString(space=True) + '</a>',
                                       rd.dna.orientation, rd.score, rd.motif, rd.orient])
                html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                                     auto_width=True)
        html.write(os.path.join(directory, "region_dbs.html"))

        ###############################################################################33
        ################ Parameters.html

        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")
        html.add_heading("Parameters")
        header_list = ["Description", "Arguments", "Value"]

        data_table = [["RNA sequence name", "-rn", parameters.rn],
                      ["Input RNA sequence file", "-r", os.path.basename(parameters.r)],
                      ["Input BED file", "-bed", os.path.basename(parameters.bed)],
                      ["Output directory", "-o", os.path.basename(parameters.o)],
                      ["Organism", "-organism", parameters.organism],
                      ["Number of repitetion of andomization", "-n", str(parameters.n)],
                      ["Alpha level for rejection p value", "-a", str(parameters.a)],
                      ["Cut off value for filtering out the low counts of DBSs", "-ccf", str(parameters.ccf)],
                      ["Remove temporary files", "-rt", str(parameters.rt)],
                      ["Input BED file for masking in randomization", "-f", str(parameters.f)],
                      ["Input file for RNA accecibility", "-ac", str(parameters.ac)],
                      ["Cut off value for RNA accecibility", "-accf", str(parameters.accf)],
                      ["Output the BED files for DNA binding sites.", "-obed", str(parameters.obed)],
                      ["Show parallel and antiparallel bindings in the plot separately.", "-showpa",
                       str(parameters.showpa)],
                      ["Minimum length", "-l", str(self.triplexator_p[0])],
                      ["Maximum error rate", "-e", str(self.triplexator_p[1])],
                      ["Tolerated number of consecutive errors", "-c", str(self.triplexator_p[2])],
                      ["Filtering repeats", "-fr", str(self.triplexator_p[3])],
                      ["Filtering mode", "-fm", str(self.triplexator_p[4])],
                      ["Output format", "-of", str(self.triplexator_p[5])],
                      ["Merge features", "-mf", str(self.triplexator_p[6])]]
        html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                             auto_width=True)
        html.add_free_content(['<a href="summary.txt" style="margin-left:100">See details</a>'])
        html.write(os.path.join(directory, "parameters.html"))
Exemplo n.º 22
0
    def gen_html(self,
                 directory,
                 parameters,
                 obed,
                 align=50,
                 alpha=0.05,
                 score=False):
        """Generate the HTML file"""
        dir_name = os.path.basename(directory)
        html_header = "Genomic Region Test: " + dir_name
        link_ds = OrderedDict()
        link_ds["RNA"] = "index.html"
        link_ds["Sig Target Regions"] = "starget_regions.html"
        link_ds["Target Regions"] = "target_regions.html"
        link_ds["Parameters"] = "parameters.html"

        ##################################################
        # index.html

        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")
        # Plots
        html.add_figure("lineplot_region.png",
                        align="left",
                        width="45%",
                        more_images=["boxplot_regions.png"])
        if self.showdbs:
            html.add_figure("lineplot_dbs.png",
                            align="left",
                            width="45%",
                            more_images=["boxplot_dbs.png"])

        if self.showdbs:
            header_list = [[
                "#", "DBD", "Target Regions", None, "Non-target Regions", None,
                "Statistics", "Target Regions", "Non-target Regions", None,
                "Statistics"
            ],
                           [
                               "", "", "with DBS", "without DBS",
                               "with DBS (average)", "s.d.", "<i>p</i>-value",
                               "NO. DBSs", "NO. DBSs (average)", "s.d.",
                               "<i>p</i>-value"
                           ]]
            header_titles = [
                [
                    "Rank", "DNA Binding Domain",
                    "Given target regions on DNA", None,
                    "Regions from randomization", None,
                    "Statistics based on target regions",
                    "Given target regions on DNA",
                    "Regions from randomization", None,
                    "Statistics based on DNA Binding Sites"
                ],
                [
                    "", "", "Number of target regions with DBS binding",
                    "Number of target regions without DBS binding",
                    "Average number of regions from randomization with DBS binding",
                    "Standard deviation", "P value",
                    "Number of related DNA Binding Sites binding to target regions",
                    "Average number of DNA Binding Sites binding to random regions",
                    "Standard deviation", "P-value"
                ]
            ]
            border_list = [
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:2pt solid gray\"",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:1pt solid gray\""
            ]
        else:
            header_list = [[
                "#", "DBD", "Target Regions", None, "Non-target Regions", None,
                "Statistics", None
            ],
                           [
                               "", "", "with DBS", "without DBS",
                               "with DBS (average)", "s.d.", "<i>p</i>-value",
                               "z-score"
                           ]]
            header_titles = [
                [
                    "Rank", "DNA Binding Domain",
                    "Given target regions on DNA", None,
                    "Regions from randomization", None,
                    "Statistics based on target regions", None
                ],
                [
                    "", "", "Number of target regions with DBS binding",
                    "Number of target regions without DBS binding",
                    "Average number of regions from randomization with DBS binding",
                    "Standard deviation", "P value", "Z-score"
                ]
            ]
            border_list = [
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:1pt solid gray\"", ""
            ]

        type_list = 'ssssssssssssssss'
        col_size_list = [
            50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50
        ]
        data_table = []

        for i, rbs in enumerate(self.rbss):
            if self.data["region"]["p"][i] < alpha:
                p_region = "<font color=\"red\">" + value2str(
                    self.data["region"]["p"][i]) + "</font>"

            else:
                p_region = value2str(self.data["region"]["p"][i])
            zs = (self.counts_tr[rbs][0] -
                  self.data["region"]["ave"][i]) / self.data["region"]["sd"][i]
            new_line = [
                str(i + 1),
                rbs.str_rna(pa=False), '<a href="dbd_region.html#' +
                rbs.str_rna() + '" style="text-align:left">' +
                str(self.counts_tr[rbs][0]) + '</a>',
                str(self.counts_tr[rbs][1]),
                value2str(self.data["region"]["ave"][i]),
                value2str(self.data["region"]["sd"][i]), p_region,
                value2str(zs)
            ]
            if self.showdbs:
                if self.data["dbs"]["p"][i] < alpha:
                    p_dbs = "<font color=\"red\">" + value2str(
                        self.data["dbs"]["p"][i]) + "</font>"
                else:
                    p_dbs = value2str(self.data["dbs"]["p"][i])

                new_line += [
                    str(self.counts_dbs[rbs]),
                    value2str(self.data["dbs"]["ave"][i]),
                    value2str(self.data["dbs"]["sd"][i]), p_dbs
                ]
            data_table.append(new_line)

        data_table = natsort.natsorted(data_table, key=lambda x: x[6])
        html.add_zebra_table(header_list,
                             col_size_list,
                             type_list,
                             data_table,
                             align=align,
                             cell_align="left",
                             auto_width=True,
                             header_titles=header_titles,
                             border_list=border_list,
                             sortable=True)

        html.add_heading("Notes")
        html.add_list([
            "RNA name: " + self.rna_name,
            "Randomization is performed for " + str(self.repeats) + " times.",
            "DBD stands for DNA Binding Domain on RNA.",
            "DBS stands for DNA Binding Site on DNA."
        ])
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "index.html"))

        #############################################################
        # RNA subpage: Profile of targeted regions for each merged DNA Binding Domain
        #############################################################

        header_list = [
            "#", "Target Region", "Associated Gene", "No. of DBSs",
            "DBS coverage"
        ]
        header_titles = [
            "Rank", "Given target regions from BED files",
            "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
            "Number of DNA Binding Sites locate within the region",
            "The proportion of the region covered by DBS binding"
        ]

        #########################################################
        # dbd_region.html
        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")

        for rbsm in self.rbss:
            html.add_heading("DNA Binding Domain: " + rbsm.str_rna(),
                             idtag=rbsm.str_rna())
            data_table = []
            for i, region in enumerate(self.txp.merged_dict[rbsm]):
                # Add information
                data_table.append([
                    str(i + 1),
                    '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' +
                    self.organism + "&position=" + region.chrom + "%3A" +
                    str(region.initial) + "-" + str(region.final) +
                    '" style="text-align:left">' +
                    region.toString(space=True) + '</a>',
                    split_gene_name(gene_name=region.name, org=self.organism),
                    str(len(self.region_dbs[region.toString()])),
                    value2str(self.region_coverage[region.toString()])
                ])

            html.add_zebra_table(header_list,
                                 col_size_list,
                                 type_list,
                                 data_table,
                                 align=align,
                                 cell_align="left",
                                 auto_width=True,
                                 header_titles=header_titles,
                                 sortable=True)
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "dbd_region.html"))

        #############################################################
        # Targeted regions centered
        #############################################################

        ##############################################################################################
        # target_regions.html
        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")

        if score:
            header_list = [
                "#", "Target region", "Associated Gene", "DBSs Count",
                "DBS coverage", "Score", "Sum of ranks"
            ]
            header_titles = [
                "Rank", "Target regions loaded from the given BED file",
                "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                "Number of DNA Binding Sites within the region",
                "The proportion of the region covered by DBS binding",
                "Scores from BED file", "Sum of all the left-hand-side ranks"
            ]
        else:
            header_list = [
                "#", "Target region", "Associated Gene", "DBSs Count",
                "DBS coverage", "Sum of ranks"
            ]
            header_titles = [
                "Rank", "Target regions loaded from the given BED file",
                "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                "Number of DNA Binding Sites within the region",
                "The proportion of the region covered by DBS binding",
                "Sum of all the left-hand-side ranks"
            ]
        html.add_heading("Target Regions")
        data_table = []

        if not self.dna_region.sorted: self.dna_region.sort()

        # Calculate the ranking
        rank_count = len(self.dna_region) - rank_array(
            [len(self.region_dbs[p.toString()]) for p in self.dna_region])
        rank_coverage = len(self.dna_region) - rank_array(
            [self.region_coverage[p.toString()] for p in self.dna_region])

        if score:
            try:
                score_list = [
                    float(p.data.split("\t")[0]) for p in self.dna_region
                ]
                rank_score = len(self.dna_region) - rank_array(
                    [abs(s) for s in score_list])
                rank_sum = [
                    x + y + z
                    for x, y, z in zip(rank_count, rank_coverage, rank_score)
                ]
                # sum_rank = rank_array(rank_sum)  # method='min'
            except ImportError:
                print(
                    "There is no score in BED file, please don't use '-score' argument."
                )
        else:
            rank_sum = [x + y for x, y in zip(rank_count, rank_coverage)]
            sum_rank = rank_array(rank_sum)

        for i, region in enumerate(self.dna_region):
            dbs_counts = str(len(self.region_dbs[region.toString()]))
            dbs_cover = value2str(self.region_coverage[region.toString()])

            newline = [
                str(i + 1),
                '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' +
                self.organism + "&position=" + region.chrom + "%3A" +
                str(region.initial) + "-" + str(region.final) +
                '" style="text-align:left">' + region.toString(space=True) +
                '</a>',
                split_gene_name(gene_name=region.name, org=self.organism),
                '<a href="region_dbs.html#' + region.toString() +
                '" style="text-align:left">' + dbs_counts + '</a>', dbs_cover
            ]

            if score:
                dbs_score = value2str(score_list[i])
                region.data = "\t".join(
                    [dbs_counts, dbs_cover, dbs_score,
                     str(rank_sum[i])])
                newline.append(dbs_score)
                newline.append(str(rank_sum[i]))
            else:
                region.data = "\t".join(
                    [dbs_counts, dbs_cover,
                     str(rank_sum[i])])
                newline.append(str(rank_sum[i]))
            data_table.append(newline)

        data_table = natsort.natsorted(data_table, key=lambda x: x[-1])
        # data_table = sorted(data_table, key=lambda x: x[-1])
        html.add_zebra_table(header_list,
                             col_size_list,
                             type_list,
                             data_table,
                             align=align,
                             cell_align="left",
                             auto_width=True,
                             header_titles=header_titles,
                             sortable=True)
        html.add_heading("Notes")
        html.add_list(["All target regions without any bindings are ignored."])
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "target_regions.html"))

        self.dna_region.sort_score()
        self.dna_region.write_bed(
            os.path.join(directory, obed + "_target_regions.bed"))

        ##############################################################################################
        # starget_regions.html    for significant target regions

        stargets = GenomicRegionSet("sig_targets")
        sig_dbs = {}
        sig_dbs_coverage = {}
        for i, r in enumerate(self.dna_region):
            sig_bindings = self.region_dbs[r.toString()].overlap_rbss(
                rbss=self.data["region"]["sig_region"])
            dbs = sig_bindings.get_dbs()
            if len(dbs) > 0:
                stargets.add(r)
                m_dbs = dbs.merge(w_return=True)
                sig_dbs[r] = len(dbs)
                # self.promoter["de"]["merged_dbs"][promoter.toString()] = len(m_dbs)
                sig_dbs_coverage[r] = float(m_dbs.total_coverage()) / len(r)

        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")

        # Select promoters in sig DBD
        if len(self.data["region"]["sig_region"]) == 0:
            html.add_heading("There is no significant DBD.")
        else:
            html.add_heading("Target regions bound by significant DBD")
            data_table = []
            # Calculate the ranking
            rank_count = len(stargets) - rank_array(
                [sig_dbs[p] for p in stargets])
            rank_coverage = len(stargets) - rank_array(
                [sig_dbs_coverage[p] for p in stargets])
            if score:
                score_list = [float(p.data.split("\t")[0]) for p in stargets]
                rank_score = len(stargets) - rank_array(
                    [abs(s) for s in score_list])
                rank_sum = [
                    x + y + z
                    for x, y, z in zip(rank_count, rank_coverage, rank_score)
                ]
                sum_rank = rank_array(rank_sum)  # method='min'
            else:
                rank_sum = [x + y for x, y in zip(rank_count, rank_coverage)]
                sum_rank = rank_array(rank_sum)

            for i, region in enumerate(stargets):
                dbssount = '<a href="region_dbs.html#' + region.toString() + \
                           '" style="text-align:left">' + str(sig_dbs[region]) + '</a>'

                region_link = region_link_internet(self.organism, region)

                newline = [
                    str(i + 1), region_link,
                    split_gene_name(gene_name=region.name, org=self.organism),
                    dbssount,
                    value2str(sig_dbs_coverage[region])
                ]
                if score:
                    dbs_score = value2str(score_list[i])
                    # region.data = "\t".join([dbs_counts, dbs_cover, dbs_score, str(sum_rank[i])])
                    newline.append(dbs_score)
                    newline.append(str(rank_sum[i]))
                    # print([dbs_score, str(sum_rank[i])])
                else:
                    # region.data = "\t".join([dbs_counts, dbs_cover, str(sum_rank[i])])
                    newline.append(str(rank_sum[i]))

                # newline += ["<i>" + str(rank_sum[i]) + "</i>"]
                # print(newline)
                data_table.append(newline)

            # print(data_table)
            # data_table = sorted(data_table, key=lambda x: x[-1])
            data_table = natsort.natsorted(data_table, key=lambda x: x[-1])
            html.add_zebra_table(header_list,
                                 col_size_list,
                                 type_list,
                                 data_table,
                                 align=align,
                                 cell_align="left",
                                 header_titles=header_titles,
                                 border_list=None,
                                 sortable=True)
            html.add_heading("Notes")
            html.add_list([
                "DBS stands for DNA Binding Site on DNA.",
                "DBS coverage is the proportion of the region where has potential to form triple helices with the given RNA."
            ])
            html.add_fixed_rank_sortable()
            html.write(os.path.join(directory, "starget_regions.html"))

        ############################
        # Subpages for targeted region centered page
        # region_dbs.html
        header_list = ["RBS", "DBS", "Strand", "Score", "Motif", "Orientation"]

        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")

        for i, region in enumerate(self.dna_region):
            if len(self.region_dbs[region.toString()]) == 0:
                continue
            else:
                html.add_heading(
                    "Associated gene: " +
                    split_gene_name(gene_name=region.name, org=self.organism),
                    idtag=region.toString())
                html.add_free_content([
                    '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' +
                    self.organism + "&position=" + region.chrom + "%3A" +
                    str(region.initial) + "-" + str(region.final) +
                    '" style="margin-left:50">' + region.toString(space=True) +
                    '</a>'
                ])
                data_table = []
                for rd in self.region_dbs[region.toString()]:
                    rbs = rd.rna.str_rna(pa=False)
                    for rbsm in self.data["region"]["sig_region"]:
                        # rbsm = rbsm.partition(":")[2].split("-")
                        if rd.rna.overlap(rbsm):
                            rbs = "<font color=\"red\">" + rbs + "</font>"
                    data_table.append([
                        rbs,
                        '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db='
                        + self.organism + "&position=" + rd.dna.chrom + "%3A" +
                        str(rd.dna.initial) + "-" + str(rd.dna.final) +
                        '" style="text-align:left">' +
                        rd.dna.toString(space=True) + '</a>',
                        rd.dna.orientation, rd.score, rd.motif, rd.orient
                    ])
                html.add_zebra_table(header_list,
                                     col_size_list,
                                     type_list,
                                     data_table,
                                     align=align,
                                     cell_align="left",
                                     auto_width=True)
        html.write(os.path.join(directory, "region_dbs.html"))

        ###############################################################################33
        ################ Parameters.html

        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")
        html.add_heading("Parameters")
        header_list = ["Description", "Arguments", "Value"]

        data_table = [
            ["RNA sequence name", "-rn", parameters.rn],
            ["Input RNA sequence file", "-r",
             os.path.basename(parameters.r)],
            ["Input BED file", "-bed",
             os.path.basename(parameters.bed)],
            ["Output directory", "-o",
             os.path.basename(parameters.o)],
            ["Organism", "-organism", parameters.organism],
            ["Number of repitetion of andomization", "-n",
             str(parameters.n)],
            ["Alpha level for rejection p value", "-a",
             str(parameters.a)],
            [
                "Cut off value for filtering out the low counts of DBSs",
                "-ccf",
                str(parameters.ccf)
            ], ["Remove temporary files", "-rt",
                str(parameters.rt)],
            [
                "Input BED file for masking in randomization", "-f",
                str(parameters.f)
            ], ["Input file for RNA accecibility", "-ac",
                str(parameters.ac)],
            [
                "Cut off value for RNA accecibility", "-accf",
                str(parameters.accf)
            ],
            [
                "Output the BED files for DNA binding sites.", "-obed",
                str(parameters.obed)
            ],
            [
                "Show parallel and antiparallel bindings in the plot separately.",
                "-showpa",
                str(parameters.showpa)
            ], ["Minimum length", "-l",
                str(self.triplexator_p[0])],
            ["Maximum error rate", "-e",
             str(self.triplexator_p[1])],
            [
                "Tolerated number of consecutive errors", "-c",
                str(self.triplexator_p[2])
            ], ["Filtering repeats", "-fr",
                str(self.triplexator_p[3])],
            ["Filtering mode", "-fm",
             str(self.triplexator_p[4])],
            ["Output format", "-of",
             str(self.triplexator_p[5])],
            ["Merge features", "-mf",
             str(self.triplexator_p[6])]
        ]
        html.add_zebra_table(header_list,
                             col_size_list,
                             type_list,
                             data_table,
                             align=align,
                             cell_align="left",
                             auto_width=True)
        html.add_free_content(
            ['<a href="summary.txt" style="margin-left:100">See details</a>'])
        html.write(os.path.join(directory, "parameters.html"))
Exemplo n.º 23
0
    def chip_evaluate(self):
        """
        This evaluation methodology uses motif-predicted binding sites (MPBSs) together with TF ChIP-seq data
        to evaluate the footprint predictions.

        return:
        """

        # Evaluate Statistics
        fpr = dict()
        tpr = dict()
        roc_auc = dict()
        roc_auc_1 = dict()
        roc_auc_2 = dict()
        recall = dict()
        precision = dict()
        prc_auc = dict()

        if "SEG" in self.footprint_type:
            mpbs_regions = GenomicRegionSet("TFBS")
            mpbs_regions.read_bed(self.tfbs_file)
            mpbs_regions.sort()

            # Verifying the maximum score of the MPBS file
            max_score = -99999999
            for region in iter(mpbs_regions):
                score = int(region.data)
                if score > max_score:
                    max_score = score
            max_score += 1

        for i in range(len(self.footprint_file)):
            footprints_regions = GenomicRegionSet("Footprints Prediction")
            footprints_regions.read_bed(self.footprint_file[i])

            # Sort footprint prediction bed files
            footprints_regions.sort()

            if self.footprint_type[i] == "SEG":
                # Increasing the score of MPBS entry once if any overlaps found in the predicted footprints.
                increased_score_mpbs_regions = GenomicRegionSet(
                    "Increased Regions")
                intersect_regions = mpbs_regions.intersect(
                    footprints_regions, mode=OverlapType.ORIGINAL)
                for region in iter(intersect_regions):
                    region.data = str(int(region.data) + max_score)
                    increased_score_mpbs_regions.add(region)

                # Keep the score of remained MPBS entry unchanged
                without_intersect_regions = mpbs_regions.subtract(
                    footprints_regions, whole_region=True)
                for region in iter(without_intersect_regions):
                    increased_score_mpbs_regions.add(region)

                increased_score_mpbs_regions.sort_score()

                fpr[i], tpr[i], roc_auc[i], roc_auc_1[i], roc_auc_2[
                    i] = self.roc_curve(increased_score_mpbs_regions)
                recall[i], precision[i], prc_auc[
                    i] = self.precision_recall_curve(
                        increased_score_mpbs_regions)
            elif self.footprint_type[i] == "SC":
                footprints_regions.sort_score()
                fpr[i], tpr[i], roc_auc[i], roc_auc_1[i], roc_auc_2[
                    i] = self.roc_curve(footprints_regions)
                recall[i], precision[i], prc_auc[
                    i] = self.precision_recall_curve(footprints_regions)

        # Output the statistics results into text
        stats_fname = self.output_location + self.tf_name + "_stats.txt"
        stats_header = ["METHOD", "AUC_100", "AUC_10", "AUC_1", "AUPR"]
        with open(stats_fname, "w") as stats_file:
            stats_file.write("\t".join(stats_header) + "\n")
            for i in range(len(self.footprint_name)):
                stats_file.write(self.footprint_name[i] + "\t" +
                                 str(roc_auc[i]) + "\t" + str(roc_auc_1[i]) +
                                 "\t" + str(roc_auc_2[i]) + "\t" +
                                 str(prc_auc[i]) + "\n")

        # Output the curves
        if self.print_roc_curve:
            label_x = "False Positive Rate"
            label_y = "True Positive Rate"
            curve_name = "ROC"
            self.plot_curve(fpr, tpr, roc_auc, label_x, label_y, self.tf_name,
                            curve_name)
        if self.print_pr_curve:
            label_x = "Recall"
            label_y = "Precision"
            curve_name = "PRC"
            self.plot_curve(recall, precision, prc_auc, label_x, label_y,
                            self.tf_name, curve_name)

        self.output_points(self.tf_name, fpr, tpr, recall, precision)
Exemplo n.º 24
0
def chip_evaluate(args):
    # Evaluate Statistics
    fpr = dict()
    tpr = dict()
    roc_auc_1 = dict()
    roc_auc_10 = dict()
    roc_auc_50 = dict()
    roc_auc_100 = dict()
    recall = dict()
    precision = dict()
    prc_auc_1 = dict()
    prc_auc_10 = dict()
    prc_auc_50 = dict()
    prc_auc_100 = dict()

    footprint_file = args.footprint_file.split(",")
    footprint_name = args.footprint_name.split(",")
    footprint_type = args.footprint_type.split(",")

    max_score = 0
    if "SEG" in footprint_type:
        mpbs_regions = GenomicRegionSet("TFBS")
        mpbs_regions.read(args.tfbs_file)

        # Verifying the maximum score of the MPBS file
        for region in iter(mpbs_regions):
            score = int(region.data.split("\t")[0])
            if score > max_score:
                max_score = score
        max_score += 1

    for i in range(len(footprint_file)):
        footprints_regions = GenomicRegionSet("Footprints Prediction")
        footprints_regions.read(footprint_file[i])
        footprints_regions.sort()

        if footprint_type[i] == "SEG":
            # Increasing the score of MPBS entry once if any overlaps found in the predicted footprints.
            increased_score_mpbs_regions = GenomicRegionSet("Increased Regions")
            intersect_regions = mpbs_regions.intersect(footprints_regions, mode=OverlapType.ORIGINAL)
            for region in iter(intersect_regions):
                region.data = str(int(region.data.split("\t")[0]) + max_score)
                increased_score_mpbs_regions.add(region)

            # Keep the score of remained MPBS entry unchanged
            without_intersect_regions = mpbs_regions.subtract(footprints_regions, whole_region=True)
            for region in iter(without_intersect_regions):
                increased_score_mpbs_regions.add(region)

            increased_score_mpbs_regions.sort_score()

            fpr[i], tpr[i], roc_auc_1[i], roc_auc_10[i], roc_auc_50[i], roc_auc_100[i] = \
                roc_curve(increased_score_mpbs_regions)
            recall[i], precision[i], prc_auc_1[i], prc_auc_10[i], prc_auc_50[i], prc_auc_100[i] = \
                precision_recall_curve(increased_score_mpbs_regions)
        elif footprint_type[i] == "SC":
            footprints_regions.sort_score()
            fpr[i], tpr[i], roc_auc_1[i], roc_auc_10[i], roc_auc_50[i], roc_auc_100[i] = \
                roc_curve(footprints_regions)
            recall[i], precision[i], prc_auc_1[i], prc_auc_10[i], prc_auc_50[i], prc_auc_100[i] = \
                precision_recall_curve(footprints_regions)

    # Output the statistics results into text
    stats_fname = os.path.join(args.output_location, "{}_stats.txt".format(args.output_prefix))
    stats_header = ["METHOD", "AUC_100", "AUC_50", "AUC_10", "AUC_1", "AUPR_100", "AUPR_50", "AUPR_10", "AUPR_1"]
    with open(stats_fname, "w") as stats_file:
        stats_file.write("\t".join(stats_header) + "\n")
        for i in range(len(footprint_name)):
            stats_file.write(footprint_name[i] + "\t" +
                             str(roc_auc_100[i]) + "\t" + str(roc_auc_50[i]) + "\t" + str(roc_auc_10[i]) + "\t" +
                             str(roc_auc_1[i]) + "\t" + str(prc_auc_100[i]) + "\t" + str(prc_auc_50[i]) + "\t" +
                             str(prc_auc_10[i]) + "\t" + str(prc_auc_1[i]) + "\n")

    # Output the curves
    if args.print_roc_curve:
        label_x = "False Positive Rate"
        label_y = "True Positive Rate"
        curve_name = "ROC"
        plot_curve(footprint_name, args.output_location, fpr, tpr, roc_auc_100, label_x, label_y, args.output_prefix,
                   curve_name)
    if args.print_pr_curve:
        label_x = "Recall"
        label_y = "Precision"
        curve_name = "PRC"
        plot_curve(footprint_name, args.output_location, recall, precision, prc_auc_100, label_x, label_y,
                   args.output_prefix, curve_name)

    output_points(footprint_name, args.output_location, args.output_prefix, fpr, tpr, recall, precision)
Exemplo n.º 25
0
def initialize(name, genome_path, regions, stepsize, binsize, bam_file_1, bam_file_2, ext_1, ext_2, \
               input_1, input_factor_1, ext_input_1, input_2, input_factor_2, ext_input_2, chrom_sizes, verbose, norm_strategy, no_gc_content, deadzones,\
               factor_input_1, factor_input_2, debug, tracker):
    
    regionset = GenomicRegionSet(name)
    chrom_sizes_dict = {}
    #if regions option is set, take the values, otherwise the whole set of 
    #chromosomes as region to search for DPs
    if regions is not None:
        with open(regions) as f:
            for line in f:
                line = line.strip()
                line = line.split('\t')
                c, s, e = line[0], int(line[1]), int(line[2])
                regionset.add(GenomicRegion(chrom=c, initial=s, final=e))
                chrom_sizes_dict[c] = e
    else:
        with open(chrom_sizes) as f:
            for line in f:
                line = line.strip()
                line = line.split('\t')
                chrom, end = line[0], int(line[1])
                regionset.add(GenomicRegion(chrom=chrom, initial=0, final=end))
                chrom_sizes_dict[chrom] = end
    
    regionset.sequences.sort()
    
    start = 0
    end = 600
    ext_stepsize = 5
    #TODO: maybe for-loops?
    #compute extension size
    if [ext_1, ext_2, ext_input_1, ext_input_2].count(None) > 0:
        print("Computing read extension sizes...", file=sys.stderr)
    if ext_1 is None:
        ext_1, values_1 = get_extension_size(bam_file_1, start=start, end=end, stepsize=ext_stepsize)
    print("Read extension for first file: %s" %ext_1, file=sys.stderr)
    
    if ext_2 is None:
        ext_2, values_2 = get_extension_size(bam_file_2, start=start, end=end, stepsize=ext_stepsize)
    print("Read extension for second file: %s" %ext_2, file=sys.stderr)

    if input_1 is not None and ext_input_1 is None:
        ext_input_1, values_input_1 = get_extension_size(input_1, start=start, end=end, stepsize=ext_stepsize)
    print("Read extension for first input file: %s" %ext_input_1, file=sys.stderr)
    
    if input_1 is not None and input_2 is not None and input_1 == input_2 and 'ext_input_1' in locals() and 'values_input_1' in locals():
        ext_input_2, values_input_2 = ext_input_1, values_input_1
    elif input_2 is not None and ext_input_2 is None:
        ext_input_2, values_input_2 = get_extension_size(input_2, start=start, end=end, stepsize=ext_stepsize)
    print("Read extension for second input file: %s" %ext_input_2, file=sys.stderr)
    
    tracker.write(text=str(ext_1) + "," + str(ext_2), header="Extension size IP1, IP2")
    if input_1 is not None and input_2 is not None:
        tracker.write(text=str(ext_input_1) + "," + str(ext_input_2), header="Extension size Control1, Control2")
    
    if verbose:
        if 'values_1' in locals() and values_1 is not None:
            with open(name + '-read-ext-1', 'w') as f:
                for v, i in values_1:
                    print(i, v, sep='\t', file=f)
        
        if 'values_2' in locals() and values_2 is not None:
            with open(name + '-read-ext-2', 'w') as f:
                for v, i in values_2:
                    print(i, v, sep='\t', file=f)
        
        if 'values_input_1' in locals() and values_input_1 is not None:
            with open(name + '-read-ext-input-1', 'w') as f:
                for v, i in values_input_1:
                    print(i, v, sep='\t', file=f)
        
        if 'values_input_2' in locals() and values_input_2 is not None:
            with open(name + '-read-ext-input-2', 'w') as f:
                for v, i in values_input_2:
                    print(i, v, sep='\t', file=f)

    cov_cdp_mpp = DualCoverageSet(name=name, region=regionset, genome_path=genome_path, binsize=binsize, stepsize=stepsize,rmdup=True,\
                                  file_1=bam_file_1, ext_1=ext_1,\
                                  file_2=bam_file_2, ext_2=ext_2, \
                                  input_1=input_1, ext_input_1=ext_input_1, input_factor_1=input_factor_1, \
                                  input_2=input_2, ext_input_2=ext_input_2, input_factor_2=input_factor_2, \
                                  chrom_sizes=chrom_sizes, verbose=verbose, norm_strategy=norm_strategy, no_gc_content=no_gc_content, deadzones=deadzones,\
                                  factor_input_1=factor_input_1, factor_input_2=factor_input_2, chrom_sizes_dict=chrom_sizes_dict, debug=debug, tracker=tracker)
    
    return cov_cdp_mpp, [ext_1, ext_2]
Exemplo n.º 26
0
def fisher_table(motif_name, regions, mpbs, gene_set=False, mpbs_set=False):
    """
    TODO

    Keyword arguments:
    motif_name -- TODO
    regions -- TODO
    mpbs -- TODO
    gene_set -- TODO
    mpbs_set -- TODO

    Return:
    a -- TODO
    b -- TODO
    gene_set -- TODO
    mpbs_set -- TODO
    """

    # Fetching motif
    mpbs_motif = GenomicRegionSet(name="mpbs_motif")
    for region in mpbs.sequences:
        if motif_name in region.name:
            mpbs_motif.add(region)

    # Performing intersections
    if len(mpbs_motif) > 0:
        # regions which are overlapping with mpbs_motif
        intersect_original = regions.intersect(mpbs_motif,
                                               mode=OverlapType.ORIGINAL,
                                               rm_duplicates=True)
        # regions which are not overlapping with regions from mpbs_motif
        subtract_overlap = regions.subtract(mpbs_motif, whole_region=True)

        # Fetching genes
        if gene_set:
            gene_set_res = GeneSet(motif_name)
            for genomic_region in intersect_original.sequences:
                if genomic_region.name:
                    gene_list = [
                        e if e[0] != "." else e[1:]
                        for e in genomic_region.name.split(":")
                    ]
                    for g in gene_list:
                        gene_set_res.genes.append(g)
            gene_set_res.genes = list(set(
                gene_set_res.genes))  # Keep only unique genes
        else:
            gene_set_res = None

        # Fetching mpbs
        if mpbs_set:
            mpbs_set_res = mpbs_motif.intersect(regions,
                                                mode=OverlapType.ORIGINAL,
                                                rm_duplicates=True)
        else:
            mpbs_set_res = None

        return len(intersect_original), len(
            subtract_overlap), gene_set_res, mpbs_set_res

    else:
        gene_set_res = GeneSet(motif_name) if gene_set else None
        mpbs_set_res = GenomicRegionSet(mpbs_motif.name) if mpbs_set else None

        return 0, len(regions), gene_set_res, mpbs_set_res
Exemplo n.º 27
0
def match_single(motif,
                 sequence,
                 genomic_region,
                 unique_threshold=None,
                 normalize_bitscore=True,
                 sort=False):
    """
    Performs motif matching given sequence and the motif.pssm passed as parameter.
    The genomic_region is needed to evaluate the correct binding position.
    Please note that the arguments should be passed as a list, to allow for parallelization
    mapping function.

    Keyword arguments:
    motif -- TODO.
    sequence -- A DNA sequence (string).
    genomic_region -- A GenomicRegion.
    output_file -- TODO.  
    unique_threshold -- If this argument is provided, the motif search will be made using a threshold of 0 and
                        then accepting only the motif matches with bitscore/motif_length >= unique_threshold.
        
    Return:
    Print MPBSs to output_file.
    """

    # Establishing threshold
    if unique_threshold:
        current_threshold = 0.0
        eval_threshold = unique_threshold
        motif_max = motif.max / motif.len
    else:
        current_threshold = motif.threshold
        eval_threshold = motif.threshold
        motif_max = motif.max

    # Performing motif matching
    try:
        # old MOODS version
        results = MOODS.search(sequence, [motif.pssm_list],
                               current_threshold,
                               absolute_threshold=True,
                               both_strands=True)
    except:
        # TODO: we can expand this to use bg from sequence, for example,
        # or from organism.
        bg = MOODS.tools.flat_bg(4)
        results = MOODS.scan.scan_dna(sequence, [motif.pssm_list], bg,
                                      [current_threshold], 7)

    grs = GenomicRegionSet("mpbs")

    for search_result in results:
        for r in search_result:
            try:
                position = r.pos
                score = r.score
            except:
                (position, score) = r

            # Verifying unique threshold acceptance
            if unique_threshold and score / motif.len < unique_threshold:
                continue

            # If match forward strand
            if position >= 0:
                p1 = genomic_region.initial + position
                strand = "+"
            # If match reverse strand
            elif not motif.is_palindrome:
                p1 = genomic_region.initial - position
                strand = "-"
            else:
                continue

            # Evaluating p2
            p2 = p1 + motif.len

            # Evaluating score (integer between 0 and 1000 -- needed for bigbed transformation)
            if normalize_bitscore:
                # Normalized bitscore = standardize to integer between 0 and 1000 (needed for bigbed transformation)
                if motif_max > eval_threshold:
                    norm_score = int(((score - eval_threshold) * 1000.0) /
                                     (motif_max - eval_threshold))
                else:
                    norm_score = 1000
            else:
                # Keep the original bitscore
                if unique_threshold:
                    norm_score = score / motif.len
                else:
                    norm_score = score

            grs.add(
                GenomicRegion(genomic_region.chrom,
                              int(p1),
                              int(p2),
                              name=motif.name,
                              orientation=strand,
                              data=str(norm_score)))

    if sort:
        grs.sort()

    return grs
Exemplo n.º 28
0
def call_peaks(bam, csizes, pval, min_reads, binsize, cfile=None):
    '''
    Call peaks on bam file using pvalue and binomial model.
    Returns GenomeRegionSet with peaks, and CoverageSet with signal.
    '''

    # make chromsizes region set
    rs = get_chrom_sizes_as_genomicregionset(csizes)

    print("calculating extension sizes...")
    # calculate ext size
    ext, _ = get_extension_size(bam, start=0, end=300, stepsize=5)

    print("calculating coverage...")
    # calc coverage
    cov = CoverageSet('coverageset', rs)
    cov.coverage_from_bam(bam_file=bam, extension_size=ext, paired_reads=True)

    # calculate cov2 for output bw
    cov2 = CoverageSet('coverageset2', rs)
    cov2.coverage_from_bam(bam_file=bam,
                           extension_size=ext,
                           paired_reads=True,
                           binsize=binsize,
                           stepsize=binsize // 2)

    if cfile is not None:
        print(f"Using control file: {cfile}")
        control = CoverageSet('contorl', rs)
        control.coverage_from_bam(bam_file=cfile, extension_size=ext)
        with np.errstate(divide='ignore', invalid='ignore'):
            norm_igg(cov, control)

        # recalc overall coverage
        cov.overall_cov = reduce(lambda x, y: np.concatenate(
            (x, y)), [cov.coverage[i] for i in range(len(cov.genomicRegions))])

    # total coverage
    s = np.sum(cov.overall_cov)
    # probability of event, a read in a bin, (avg reads/bin )/libsize
    p = np.mean(cov.overall_cov[cov.overall_cov > 0]) / s

    # what is the max coverage
    maxcov = np.max(cov.overall_cov)

    # create dict with probability for each count value
    mc = np.arange(0, maxcov + 1, dtype="object")
    d = {count: binom_test((count, s - count), p=p) for count in mc}

    # create GenomicRegionSet to hold peaks
    res = GenomicRegionSet('identified_peaks')

    print("calculating peaks...")
    # iterate through bins in genome, store peaks
    for i, c in enumerate(cov.overall_cov):
        if filter_bins(c, d, min_reads):
            chrom, s, e = cov.index2coordinates(i, rs)
            res.add(GenomicRegion(chrom, s, e + 1, data=d[c]))

    # merge ol peaks
    res.merge()

    # merge peaks within ext dist
    rc = res.cluster(ext)

    return rc, cov, cov2
Exemplo n.º 29
0
 def _intersect(self, y, rm_duplicates=False):
     """Return the overlapping regions with three different modes.
                
     (mode = OverlapType.ORIGINAL)
     Return the regions of original GenomicRegionSet which have any intersections with y.
     
         Keyword arguments:
         y -- the GenomicRegionSet which to compare with
         
         Return:
         z -- the regions of original GenomicRegionSet which have any intersections with y
         
         Graphical explanation:
         self       ----------              ------
         y              ----------                    ----
         Result     ----------
         
     """
     a = self
     b = y
     
     z = GenomicRegionSet(a.name + ' + ' + b.name)
     # XXX - someone putted an special symbol and spaces in the name! this is used as file name, never use strange characters.
     if len(a) == 0 or len(b) == 0: return z
     
     else:
         # If there is overlap within self or y, they should be merged first. 
         if a.sorted == False: a.sort()
         if b.sorted == False: b.sort()
         
         iter_a = iter(a)
         s = iter_a.next()
         last_j = len(b)-1
         j = 0
         cont_loop = True
              
         ########################### OverlapType.ORIGINAL ###################################
         while cont_loop:
             #print(str(s),"\t",str(b[j]))
             # When the regions overlap
             if s.overlap(b[j]):
                 z.add(s)
                 
                 
                 try: s = iter_a.next()
                 except: cont_loop = False
                 
             elif s < b[j]:
                 try: s = iter_a.next()
                 except: cont_loop = False
             elif s > b[j]:
                 if j == last_j: cont_loop = False
                 else: j = j + 1
             else:
                 try: s = iter_a.next()
                 except: cont_loop = False
                     
         if rm_duplicates: 
             z.remove_duplicates()
         
         return z