async def handle_recognized(
        self, recognition: NluIntentParsed
    ) -> typing.AsyncIterable[typing.Union[typing.Tuple[NluIntent,
                                                        TopicArgs], ]]:
        """Intent successfully recognized."""
        try:
            if not recognition.session_id:
                _LOGGER.warning("Missing session id on intent message.")
                return

            site_session = self.all_sessions.get(recognition.session_id)
            if site_session is None:
                _LOGGER.warning(
                    "No session for id %s. Dropping recognition.",
                    recognition.session_id,
                )
                return

            original_input = site_session.text_captured.text

            _LOGGER.debug("Recognized %s", recognition)

            # intent
            yield (NluIntent(
                input=recognition.input,
                id=recognition.id,
                site_id=recognition.site_id,
                session_id=recognition.session_id,
                intent=Intent(
                    intent_name=recognition.intent.intent_name,
                    confidence_score=recognition.intent.confidence_score,
                ),
                slots=recognition.slots,
                asr_tokens=[
                    NluIntent.make_asr_tokens(recognition.input.split())
                ],
                raw_input=original_input,
                custom_data=site_session.custom_data,
            ), {
                "intent_name": recognition.intent.intent_name
            })

        except Exception:
            _LOGGER.exception("handle_recognized")
Exemplo n.º 2
0
    async def handle_query(
        self, query: NluQuery
    ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[
            NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]:
        """Do intent recognition."""
        original_input = query.input

        try:
            if not self.intent_graph and self.graph_path and self.graph_path.is_file(
            ):
                # Load graph from file
                _LOGGER.debug("Loading %s", self.graph_path)
                with open(self.graph_path, mode="rb") as graph_file:
                    self.intent_graph = rhasspynlu.gzip_pickle_to_graph(
                        graph_file)

            if self.intent_graph:

                def intent_filter(intent_name: str) -> bool:
                    """Filter out intents."""
                    if query.intent_filter:
                        return intent_name in query.intent_filter
                    return True

                # Replace digits with words
                if self.replace_numbers:
                    # Have to assume whitespace tokenization
                    words = rhasspynlu.replace_numbers(query.input.split(),
                                                       self.language)
                    query.input = " ".join(words)

                input_text = query.input

                # Fix casing for output event
                if self.word_transform:
                    input_text = self.word_transform(input_text)

                if self.failure_token and (self.failure_token
                                           in query.input.split()):
                    # Failure token was found in input
                    recognitions = []
                else:
                    # Pass in raw query input so raw values will be correct
                    recognitions = recognize(
                        query.input,
                        self.intent_graph,
                        intent_filter=intent_filter,
                        word_transform=self.word_transform,
                        fuzzy=self.fuzzy,
                        extra_converters=self.extra_converters,
                    )
            else:
                _LOGGER.error("No intent graph loaded")
                recognitions = []

            if NluHermesMqtt.is_success(recognitions):
                # Use first recognition only.
                recognition = recognitions[0]
                assert recognition is not None
                assert recognition.intent is not None

                intent = Intent(
                    intent_name=recognition.intent.name,
                    confidence_score=recognition.intent.confidence,
                )
                slots = [
                    Slot(
                        entity=(e.source or e.entity),
                        slot_name=e.entity,
                        confidence=1.0,
                        value=e.value_dict,
                        raw_value=e.raw_value,
                        range=SlotRange(
                            start=e.start,
                            end=e.end,
                            raw_start=e.raw_start,
                            raw_end=e.raw_end,
                        ),
                    ) for e in recognition.entities
                ]

                if query.custom_entities:
                    # Copy user-defined entities
                    for entity_name, entity_value in query.custom_entities.items(
                    ):
                        slots.append(
                            Slot(
                                entity=entity_name,
                                confidence=1.0,
                                value={"value": entity_value},
                            ))

                # intentParsed
                yield NluIntentParsed(
                    input=recognition.text,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    intent=intent,
                    slots=slots,
                )

                # intent
                yield (
                    NluIntent(
                        input=recognition.text,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        intent=intent,
                        slots=slots,
                        asr_tokens=[
                            NluIntent.make_asr_tokens(recognition.tokens)
                        ],
                        asr_confidence=query.asr_confidence,
                        raw_input=original_input,
                        wakeword_id=query.wakeword_id,
                        lang=(query.lang or self.lang),
                        custom_data=query.custom_data,
                    ),
                    {
                        "intent_name": recognition.intent.name
                    },
                )
            else:
                # Not recognized
                yield NluIntentNotRecognized(
                    input=query.input,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    custom_data=query.custom_data,
                )
        except Exception as e:
            _LOGGER.exception("handle_query")
            yield NluError(
                site_id=query.site_id,
                session_id=query.session_id,
                error=str(e),
                context=original_input,
            )
Exemplo n.º 3
0
    async def handle_query(
        self, query: NluQuery
    ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[
            NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]:
        """Do intent recognition."""
        original_input = query.input

        try:
            self.maybe_load_engine()
            assert self.engine, "Snips engine not loaded. You may need to train."

            input_text = query.input

            # Fix casing for output event
            if self.word_transform:
                input_text = self.word_transform(input_text)

            # Do parsing
            result = self.engine.parse(input_text, query.intent_filter)
            intent_name = result.get("intent", {}).get("intentName")

            if intent_name:
                slots = [
                    Slot(
                        slot_name=s["slotName"],
                        entity=s["entity"],
                        value=s["value"],
                        raw_value=s["rawValue"],
                        range=SlotRange(start=s["range"]["start"],
                                        end=s["range"]["end"]),
                    ) for s in result.get("slots", [])
                ]

                # intentParsed
                yield NluIntentParsed(
                    input=query.input,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    intent=Intent(intent_name=intent_name,
                                  confidence_score=1.0),
                    slots=slots,
                )

                # intent
                yield (
                    NluIntent(
                        input=query.input,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        intent=Intent(intent_name=intent_name,
                                      confidence_score=1.0),
                        slots=slots,
                        asr_tokens=[
                            NluIntent.make_asr_tokens(query.input.split())
                        ],
                        raw_input=original_input,
                        wakeword_id=query.wakeword_id,
                        lang=query.lang,
                    ),
                    {
                        "intent_name": intent_name
                    },
                )
            else:
                # Not recognized
                yield NluIntentNotRecognized(
                    input=query.input,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                )
        except Exception as e:
            _LOGGER.exception("handle_query")
            yield NluError(
                site_id=query.site_id,
                session_id=query.session_id,
                error=str(e),
                context=original_input,
            )
    async def async_test_handle_query(self):
        """Verify valid input leads to a query message."""
        query_id = str(uuid.uuid4())
        text = "set the bedroom light to red"

        query = NluQuery(input=text,
                         id=query_id,
                         site_id=self.site_id,
                         session_id=self.session_id)

        results = []
        async for result in self.hermes.on_message(query):
            results.append(result)

        # Check results
        intent = Intent(intent_name="SetLightColor", confidence_score=1.0)
        slots = [
            Slot(
                entity="name",
                slot_name="name",
                value={
                    "kind": "Unknown",
                    "value": "bedroom"
                },
                raw_value="bedroom",
                confidence=1.0,
                range=SlotRange(start=8, end=15, raw_start=8, raw_end=15),
            ),
            Slot(
                entity="color",
                slot_name="color",
                value={
                    "kind": "Unknown",
                    "value": "red"
                },
                raw_value="red",
                confidence=1.0,
                range=SlotRange(start=25, end=28, raw_start=25, raw_end=28),
            ),
        ]

        self.assertEqual(
            results,
            [
                NluIntentParsed(
                    input=text,
                    id=query_id,
                    site_id=self.site_id,
                    session_id=self.session_id,
                    intent=intent,
                    slots=slots,
                ),
                (
                    NluIntent(
                        input=text,
                        id=query_id,
                        site_id=self.site_id,
                        session_id=self.session_id,
                        intent=intent,
                        slots=slots,
                        asr_tokens=[NluIntent.make_asr_tokens(text.split())],
                        raw_input=text,
                    ),
                    {
                        "intent_name": intent.intent_name
                    },
                ),
            ],
        )
Exemplo n.º 5
0
    async def handle_query(
        self, query: NluQuery
    ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[
            NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]:
        """Do intent recognition."""
        # Check intent graph
        try:
            if (not self.intent_graph and self.intent_graph_path
                    and self.intent_graph_path.is_file()):
                _LOGGER.debug("Loading %s", self.intent_graph_path)
                with open(self.intent_graph_path, mode="rb") as graph_file:
                    self.intent_graph = rhasspynlu.gzip_pickle_to_graph(
                        graph_file)

            # Check examples
            if (self.intent_graph and self.examples_path
                    and self.examples_path.is_file()):

                def intent_filter(intent_name: str) -> bool:
                    """Filter out intents."""
                    if query.intent_filter:
                        return intent_name in query.intent_filter
                    return True

                original_text = query.input

                # Replace digits with words
                if self.replace_numbers:
                    # Have to assume whitespace tokenization
                    words = rhasspynlu.replace_numbers(query.input.split(),
                                                       self.language)
                    query.input = " ".join(words)

                input_text = query.input

                # Fix casing
                if self.word_transform:
                    input_text = self.word_transform(input_text)

                recognitions: typing.List[rhasspynlu.intent.Recognition] = []

                if input_text:
                    recognitions = rhasspyfuzzywuzzy.recognize(
                        input_text,
                        self.intent_graph,
                        str(self.examples_path),
                        intent_filter=intent_filter,
                        extra_converters=self.extra_converters,
                    )
            else:
                _LOGGER.error("No intent graph or examples loaded")
                recognitions = []

            # Use first recognition only if above threshold
            if (recognitions and recognitions[0] and recognitions[0].intent
                    and (recognitions[0].intent.confidence >=
                         self.confidence_threshold)):
                recognition = recognitions[0]
                assert recognition.intent
                intent = Intent(
                    intent_name=recognition.intent.name,
                    confidence_score=recognition.intent.confidence,
                )
                slots = [
                    Slot(
                        entity=(e.source or e.entity),
                        slot_name=e.entity,
                        confidence=1.0,
                        value=e.value_dict,
                        raw_value=e.raw_value,
                        range=SlotRange(
                            start=e.start,
                            end=e.end,
                            raw_start=e.raw_start,
                            raw_end=e.raw_end,
                        ),
                    ) for e in recognition.entities
                ]

                if query.custom_entities:
                    # Copy user-defined entities
                    for entity_name, entity_value in query.custom_entities.items(
                    ):
                        slots.append(
                            Slot(
                                entity=entity_name,
                                confidence=1.0,
                                value={"value": entity_value},
                            ))

                # intentParsed
                yield NluIntentParsed(
                    input=recognition.text,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    intent=intent,
                    slots=slots,
                )

                # intent
                yield (
                    NluIntent(
                        input=recognition.text,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        intent=intent,
                        slots=slots,
                        asr_tokens=[
                            NluIntent.make_asr_tokens(recognition.tokens)
                        ],
                        asr_confidence=query.asr_confidence,
                        raw_input=original_text,
                        wakeword_id=query.wakeword_id,
                        lang=(query.lang or self.lang),
                        custom_data=query.custom_data,
                    ),
                    {
                        "intent_name": recognition.intent.name
                    },
                )
            else:
                # Not recognized
                yield NluIntentNotRecognized(
                    input=query.input,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    custom_data=query.custom_data,
                )
        except Exception as e:
            _LOGGER.exception("handle_query")
            yield NluError(
                site_id=query.site_id,
                session_id=query.session_id,
                error=str(e),
                context=original_text,
            )
Exemplo n.º 6
0
    async def handle_query(
        self, query: NluQuery
    ) -> typing.AsyncIterable[
        typing.Union[
            typing.Tuple[NluIntent, TopicArgs],
            NluIntentParsed,
            NluIntentNotRecognized,
            NluError,
        ]
    ]:
        """Do intent recognition."""
        try:
            input_text = query.input

            # Fix casing
            if self.word_transform:
                input_text = self.word_transform(input_text)

            if self.nlu_url:
                # Use remote server
                _LOGGER.debug(self.nlu_url)

                params = {}

                # Add intent filter
                if query.intent_filter:
                    params["intentFilter"] = ",".join(query.intent_filter)

                async with self.http_session.post(
                    self.nlu_url, data=input_text, params=params, ssl=self.ssl_context
                ) as response:
                    response.raise_for_status()
                    intent_dict = await response.json()
            elif self.nlu_command:
                # Run external command
                _LOGGER.debug(self.nlu_command)
                proc = await asyncio.create_subprocess_exec(
                    *self.nlu_command,
                    stdin=asyncio.subprocess.PIPE,
                    stdout=asyncio.subprocess.PIPE,
                )

                input_bytes = (input_text.strip() + "\n").encode()
                output, error = await proc.communicate(input_bytes)
                if error:
                    _LOGGER.debug(error.decode())

                intent_dict = json.loads(output)
            else:
                _LOGGER.warning("Not handling NLU query (no URL or command)")
                return

            intent_name = intent_dict["intent"].get("name", "")

            if intent_name:
                # Recognized
                tokens = query.input.split()
                slots = [
                    Slot(
                        entity=e["entity"],
                        slot_name=e["entity"],
                        confidence=1,
                        value=e.get("value_details", {"value": ["value"]}),
                        raw_value=e.get("raw_value", e["value"]),
                        range=SlotRange(
                            start=e.get("start", 0),
                            end=e.get("end", 1),
                            raw_start=e.get("raw_start"),
                            raw_end=e.get("raw_end"),
                        ),
                    )
                    for e in intent_dict.get("entities", [])
                ]

                yield NluIntentParsed(
                    input=query.input,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    intent=Intent(
                        intent_name=intent_name,
                        confidence_score=intent_dict["intent"].get("confidence", 1.0),
                    ),
                    slots=slots,
                )

                yield (
                    NluIntent(
                        input=query.input,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        intent=Intent(
                            intent_name=intent_name,
                            confidence_score=intent_dict["intent"].get(
                                "confidence", 1.0
                            ),
                        ),
                        slots=slots,
                        asr_tokens=[NluIntent.make_asr_tokens(tokens)],
                        raw_input=query.input,
                        wakeword_id=query.wakeword_id,
                        lang=query.lang,
                    ),
                    {"intent_name": intent_name},
                )
            else:
                # Not recognized
                yield NluIntentNotRecognized(
                    input=query.input,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                )
        except Exception as e:
            _LOGGER.exception("handle_query")
            yield NluError(
                error=repr(e),
                context=repr(query),
                site_id=query.site_id,
                session_id=query.session_id,
            )
Exemplo n.º 7
0
    async def handle_query(
        self, query: NluQuery
    ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[
            NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]:
        """Do intent recognition."""
        try:
            original_input = query.input

            # Replace digits with words
            if self.replace_numbers:
                # Have to assume whitespace tokenization
                words = rhasspynlu.replace_numbers(query.input.split(),
                                                   self.number_language)
                query.input = " ".join(words)

            input_text = query.input

            # Fix casing for output event
            if self.word_transform:
                input_text = self.word_transform(input_text)

            parse_url = urljoin(self.rasa_url, "model/parse")
            _LOGGER.debug(parse_url)

            async with self.http_session.post(
                    parse_url,
                    json={
                        "text": input_text,
                        "project": self.rasa_project
                    },
                    ssl=self.ssl_context,
            ) as response:
                response.raise_for_status()
                intent_json = await response.json()
                intent = intent_json.get("intent", {})
                intent_name = intent.get("name", "")

                if intent_name and (query.intent_filter is None
                                    or intent_name in query.intent_filter):
                    confidence_score = float(intent.get("confidence", 0.0))
                    slots = [
                        Slot(
                            entity=e.get("entity", ""),
                            slot_name=e.get("entity", ""),
                            confidence=float(e.get("confidence", 0.0)),
                            value={
                                "kind": "Unknown",
                                "value": e.get("value", "")
                            },
                            raw_value=e.get("value", ""),
                            range=SlotRange(
                                start=int(e.get("start", 0)),
                                end=int(e.get("end", 1)),
                                raw_start=int(e.get("start", 0)),
                                raw_end=int(e.get("end", 1)),
                            ),
                        ) for e in intent_json.get("entities", [])
                    ]

                    if query.custom_entities:
                        # Copy user-defined entities
                        for entity_name, entity_value in query.custom_entities.items(
                        ):
                            slots.append(
                                Slot(
                                    entity=entity_name,
                                    confidence=1.0,
                                    value={"value": entity_value},
                                ))

                    # intentParsed
                    yield NluIntentParsed(
                        input=input_text,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        intent=Intent(intent_name=intent_name,
                                      confidence_score=confidence_score),
                        slots=slots,
                    )

                    # intent
                    yield (
                        NluIntent(
                            input=input_text,
                            id=query.id,
                            site_id=query.site_id,
                            session_id=query.session_id,
                            intent=Intent(
                                intent_name=intent_name,
                                confidence_score=confidence_score,
                            ),
                            slots=slots,
                            asr_tokens=[
                                NluIntent.make_asr_tokens(input_text.split())
                            ],
                            asr_confidence=query.asr_confidence,
                            raw_input=original_input,
                            lang=(query.lang or self.lang),
                            custom_data=query.custom_data,
                        ),
                        {
                            "intent_name": intent_name
                        },
                    )
                else:
                    # Not recognized
                    yield NluIntentNotRecognized(
                        input=query.input,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        custom_data=query.custom_data,
                    )
        except Exception as e:
            _LOGGER.exception("nlu query")
            yield NluError(
                site_id=query.site_id,
                session_id=query.session_id,
                error=str(e),
                context=query.input,
            )