Exemplo n.º 1
0
def main():
    """
    """

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT pop.riipl_id,
                 SUM(citations) AS citations,
                 SUM(fines)     AS citation_fines
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
       LEFT JOIN {citations} c
              ON pop.riipl_id = c.riipl_id AND 
                 c.yrmo = lb.yrmo
        GROUP BY pop.riipl_id
          """.format(**globals())

    with Connection() as cxn:
        features = features.join(
            pd.read_sql(sql, cxn._connection).set_index(index))

    features = features.fillna(0)

    labels = {
        "CITATIONS": "Number of police citations",
        "CITATION_FINES": "Total fines from police citations"
    }

    SaveFeatures(features, out, manifest, population, labels)
Exemplo n.º 2
0
def main():
    """
    Home addresses from MEGA table
    """

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT DISTINCT
                 pop.riipl_id,
                 address_trct
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
      INNER JOIN {mega} m 
              ON pop.riipl_id = m.riipl_id AND
                 lb.yrmo = m.month
           WHERE m.address_trct IS NOT NULL
         """.format(**globals())

    with cx_Oracle.connect("/") as cxn:
        values = pd.read_sql(sql, cxn).set_index(index)

    labels = {}
    for trct in values.ADDRESS_TRCT.unique():
        name = "TRCT_{}".format(trct)
        feature = values[values["ADDRESS_TRCT"] == trct]
        feature[name] = 1
        features = features.join(feature[name])
        labels[name] = "lived in Census tract {} during lookback period".format(trct)

    features = features.fillna(0)

    SaveFeatures(features, out, manifest, population, labels, bool_features=list(labels))
Exemplo n.º 3
0
def main():
    """
    """

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT pop.riipl_id,   
                 SUM(cc.car_crash) AS car_crashes,
                 SUM(cc.injured)   AS car_crash_injuries
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
      INNER JOIN {car_crashes} cc
              ON pop.riipl_id = cc.riipl_id AND 
                 cc.yrmo = lb.yrmo
        GROUP BY pop.riipl_id
          """.format(**globals())

    with Connection() as cxn:
        features = features.join(
            pd.read_sql(sql, cxn._connection).set_index(index))

    features = features.fillna(0)

    labels = {
        "CAR_CRASHES":
        "count of car crashes involved in during lookback period",
        "CAR_CRASH_INJURIES":
        "count of car crash injuries during lookback period",
    }

    SaveFeatures(features, out, manifest, population, labels)
Exemplo n.º 4
0
def main():

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    # Claims payments

    sql = """
          SELECT pop.riipl_id,
                 SUM(mc.pay_amt) AS medicaid_payments,
                 SUM(CASE WHEN mc.src_id IN (4, 8, 16, 17, 26, 27) THEN mc.pay_amt ELSE 0 END) AS medicaid_prof_payments,
                 SUM(CASE WHEN mc.ed_flag = 1 THEN mc.pay_amt ELSE 0 END) AS medicaid_ed_payments
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
       LEFT JOIN {dim_date} dd
              ON lb.yrmo = dd.yrmo
      INNER JOIN {medicaid_claims} mc
              ON pop.riipl_id = mc.riipl_id AND
                 dd.date_dt = mc.claim_dt
        GROUP BY pop.riipl_id
      """.format(**globals())

    with cx_Oracle.connect("/") as cxn:
        features = features.join(pd.read_sql(sql, cxn).set_index(index))

    # Pharmacy payments

    sql = """
          SELECT pop.riipl_id,
                 SUM(mp.pay_amt) AS medicaid_rx_payments
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
       LEFT JOIN {dim_date} dd
              ON lb.yrmo = dd.yrmo
      INNER JOIN {medicaid_pharmacy} mp
              ON pop.riipl_id = mp.riipl_id AND
                 dd.date_dt = mp.dispensed_dt
        GROUP BY pop.riipl_id
      """.format(**globals())

    with cx_Oracle.connect("/") as cxn:
        features = features.join(pd.read_sql(sql, cxn).set_index(index))

    # Payments are comprehensive, so a missing value means $0
    features = features.fillna(0)

    labels = {
        "MEDICAID_PAYMENTS"      : "Total Medicaid payments",
        "MEDICAID_PROF_PAYMENTS" : "Total Medicaid payments to professionals",
        "MEDICAID_ED_PAYMENTS"   : "Total Medicaid payments to Emergency Departments",
        "MEDICAID_RX_PAYMENTS"   : "Total Medicaid pharmacy payments"
    }

    SaveFeatures(features, out, manifest, population, labels)
Exemplo n.º 5
0
def main():

    icd9 = pd.concat([
        pd.read_csv(icd9_file1, usecols=[0, 1], names=["DIAG_CDE", "DESC"]),
        pd.read_csv(icd9_file2)
    ]).drop_duplicates("DIAG_CDE").set_index("DIAG_CDE")

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT pop.riipl_id,
                 mdc.diag_cde,
                 COUNT(*) AS n
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
       LEFT JOIN {dim_date} dd
              ON lb.yrmo = dd.yrmo
      INNER JOIN {medicaid_diag_cde} mdc
              ON pop.riipl_id = mdc.riipl_id AND
                 dd.date_dt = mdc.claim_dt
      INNER JOIN {diag_corr} dc
              ON mdc.diag_cde = dc.diag_cde AND
                 ABS(dc.corr) > 0
        GROUP BY pop.riipl_id, mdc.diag_cde
              """.format(**globals())

    with Connection() as cxn:
        values = pd.read_sql(sql, cxn._connection)

    cdes = values.DIAG_CDE.unique()

    labels = {}
    for cde in cdes:
        feature = values.loc[values.DIAG_CDE == cde, "N"]
        feature.name = "DIAG_{}".format(cde)
        features = features.join(feature)
        try:
            desc = icd9.loc[cde, "DESC"]
        except KeyError:
            desc = "unknown description"
        label = "number of diagnoses for '{}' during lookback period".format(
            desc)
        labels[feature.name] = label

    features = features.fillna(0)

    SaveFeatures(features, out, manifest, population, labels)
Exemplo n.º 6
0
def main():

    procs = pd.read_csv(procsfile, sep="|", index_col="PROC_CDE")

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT pop.riipl_id,
                 mpc.proc_cde,
                 COUNT(*) AS n
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
       LEFT JOIN {dim_date} dd
              ON lb.yrmo = dd.yrmo
      INNER JOIN {medicaid_proc_cde} mpc
              ON pop.riipl_id = mpc.riipl_id AND
                 dd.date_dt = mpc.claim_dt
      INNER JOIN {proc_corr} pc
              ON mpc.proc_cde = pc.proc_cde AND
                 ABS(pc.corr) > 0
        GROUP BY pop.riipl_id, mpc.proc_cde
          """.format(**globals())

    with Connection() as cxn:
        values = pd.read_sql(sql, cxn._connection)

    cdes = values.PROC_CDE.unique()

    labels = {}
    for cde in cdes:
        feature = values.loc[values.PROC_CDE == cde, "N"]
        feature.name = "PROC_{}".format(cde)
        features = features.join(feature)
        try:
            desc = procs.loc[cde, "DESCRIPTION"]
        except KeyError:
            desc = "unknown procedure"
        label = "number of procedures for '{}' during lookback period".format(
            desc)
        labels[feature.name] = label

    features = features.fillna(0)

    SaveFeatures(features, out, manifest, population, labels)
Exemplo n.º 7
0
def main():
    """
    Opioid prescriptions and adverse outcomes among DHS household
    """

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT pop.riipl_id,
                 SUM(ABS(no.opioid))     AS dhs_hh_opioid_rx,
                 SUM(no.recovery)        AS dhs_hh_recovery_rx,
                 COUNT(o.outcome_any_dt) AS dhs_hh_outcomes
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
       LEFT JOIN {dim_date} dd
              ON lb.yrmo = dd.yrmo
       LEFT JOIN {household} hh
              ON pop.riipl_id = hh.riipl_id
       LEFT JOIN {medicaid_pharmacy} mp
              ON hh.riipl_id_hh = mp.riipl_id AND
                 dd.date_dt = mp.dispensed_dt
       LEFT JOIN {ndc_opioids} no
              ON mp.ndc9_code = no.ndc
       LEFT JOIN {outcomes} o
              ON hh.riipl_id_hh = o.riipl_id AND
                 dd.date_dt = o.outcome_any_dt
        GROUP BY pop.riipl_id
          """.format(**globals())

    with Connection() as cxn:
        features = features.join(
            pd.read_sql(sql, cxn._connection).set_index(index))

    features = features.fillna(0)

    labels = {
        "DHS_HH_OPIOID_RX": "Number of opioid prescriptions in household",
        "DHS_HH_RECOVERY_RX": "Number of recovery prescriptions in household",
        "DHS_HH_OUTCOMES": "Number of adverse outcomes in household"
    }

    SaveFeatures(features, out, manifest, population, labels)
Exemplo n.º 8
0
def main():

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT pop.riipl_id,
                 MAX(CASE WHEN rd.gender = 'M'                THEN 1 ELSE 0 END) AS sex_m,
                 MAX(CASE WHEN rd.primary_lang_cd = '01'      THEN 1 ELSE 0 END) AS lang_spanish,
                 MAX(CASE WHEN rd.primary_lang_cd = '31'      THEN 1 ELSE 0 END) AS lang_portu,
                 MAX(CASE WHEN rd.primary_lang_cd <> '00' AND
                               rd.primary_lang_cd <> '01' AND
                               rd.primary_lang_cd <> '31'     THEN 1 ELSE 0 END) AS lang_other
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
       LEFT JOIN {medicaid_enrollment} me
              ON pop.riipl_id = me.riipl_id AND
                 lb.yrmo = me.yrmo
       LEFT JOIN {recip_demo} rd
              ON me.re_unique_id = rd.recipient_id
        GROUP BY pop.riipl_id
          """.format(**globals())

    with cx_Oracle.connect("/") as cxn:
        features = features.join(pd.read_sql(sql, cxn).set_index(index))

    features = features.fillna(0)

    labels = {
        "SEX_M": "Sex is male",
        "LANG_SPANISH": "Primary language is Spanish",
        "LANG_PORTU": "Primary language is Portuguese",
        "LANG_OTHER":
        "Primary language is not English, Spanish, or Portuguese",
    }

    SaveFeatures(features,
                 out,
                 manifest,
                 population,
                 labels,
                 bool_features=list(labels))
Exemplo n.º 9
0
def main():
    """
    Social program payments from MEGA table
    """

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT pop.riipl_id,   
                 SUM(m.snap_payments)  AS snap_payments,
                 SUM(m.tanf_payments)  AS tanf_payments,
                 SUM(m.tdi_payments)   AS tdi_payments,
                 SUM(m.ui_payments)    AS ui_payments,
                 SUM(m.ssi_supplement) AS ssi_supplement,
                 SUM(m.gpa_payments)   AS gpa_payments,
                 SUM(m.ccap_payments)  AS ccap_payments
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
      INNER JOIN {mega} m
              ON pop.riipl_id = m.riipl_id AND
                 lb.yrmo = m.month
        GROUP BY pop.riipl_id
        """.format(**globals())

    with cx_Oracle.connect("/") as cxn:
        features = features.join(pd.read_sql(sql, cxn).set_index(index))

    # Payments are comprehensive, so a missing value means $0
    features = features.fillna(0)

    labels = {
        "SNAP_PAYMENTS"  : "Total Food Stamps payments",
        "TANF_PAYMENTS"  : "Total TANF payments",
        "TDI_PAYMENTS"   : "Total TDI payments",
        "UI_PAYMENTS"    : "Total Unemployment Insurance payments",
        "SSI_SUPPLEMENT" : "Total SSI supplement",
        "GPA_PAYMENTS"   : "Total GPA payments",
        "CCAP_PAYMENTS"  : "Total CCAP payments"
    }

    SaveFeatures(features, out, manifest, population, labels)
Exemplo n.º 10
0
def main():
    """
    Size of DHS household and indicator for births in the DHS household from MEGA table
    """

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT pop.riipl_id,
                 COUNT(DISTINCT m2.riipl_id) AS dhs_hh_size,
                 MAX(CASE WHEN m1.age > 1 AND m2.age < 1
                          THEN 1
                          ELSE 0 END)        AS dhs_hh_birth
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
      INNER JOIN {mega} m1
              ON pop.riipl_id = m1.riipl_id AND
                 lb.yrmo = m1.month
      INNER JOIN {mega} m2
              ON m1.dhs_hh_id = m2.dhs_hh_id AND
                 m1.month = m2.month
        GROUP BY pop.riipl_id
          """.format(**globals())

    with Connection() as cxn:
        features = features.join(pd.read_sql(sql, cxn._connection).set_index(index))

    features = features.fillna(0)

    labels = {
        "DHS_HH_SIZE"  : "Size of household",
        "DHS_HH_BIRTH" : "New birth in household"
    }

    SaveFeatures(features, out, manifest, population, labels, bool_features=["DHS_HH_BIRTH"])
Exemplo n.º 11
0
def main():

    index = ["RIIPL_ID"]
    features = CachePopulation(population, index).set_index(index)

    sql = """
          SELECT pop.riipl_id,
                 COUNT(DISTINCT me.re_unique_id)                                           AS medicaid_n_ids,
                 MAX(CASE WHEN UPPER(dim.description) LIKE '%PREG%'     THEN 1 ELSE 0 END) AS medicaid_pregnant,
                 MAX(CASE WHEN UPPER(dim.description) LIKE '%PARTUM%'   THEN 1 ELSE 0 END) AS medicaid_postpartum,
                 MAX(CASE WHEN UPPER(dim.description) LIKE '%BLIND%'    THEN 1 ELSE 0 END) AS medicaid_blind,
                 MAX(CASE WHEN UPPER(dim.description) LIKE '%DISABLED%' THEN 1 ELSE 0 END) AS medicaid_disabled,
                 MAX(CASE WHEN UPPER(dim.description) LIKE '%ALIEN%'    THEN 1 ELSE 0 END) AS medicaid_alien,
                 MAX(CASE WHEN UPPER(dim.description) LIKE '%CHILD%'    THEN 1 ELSE 0 END) AS medicaid_child,
                 MAX(CASE WHEN dim.needy_ind = 'Medically'              THEN 1 ELSE 0 END) AS medicaid_med_needy,
                 MAX(NVL(me.managed_care, 0))                                              AS medicaid_managed_care,
                 MAX(NVL(me.premium_payment, 0))                                           AS medicaid_prem_payment,
                 MAX(CASE WHEN rxn.payer_cd = 'B'                       THEN 1 ELSE 0 END) AS medicaid_payer_bhddh,
                 MAX(CASE WHEN rxn.payer_cd = 'C'                       THEN 1 ELSE 0 END) AS medicaid_payer_cmap,
                 MAX(CASE WHEN rxn.payer_cd = 'D'                       THEN 1 ELSE 0 END) AS medicaid_payer_doc,
                 MAX(CASE WHEN rxn.payer_cd = 'H'                       THEN 1 ELSE 0 END) AS medicaid_payer_aids,
                 MAX(CASE WHEN rxn.payer_cd = 'O'                       THEN 1 ELSE 0 END) AS medicaid_payer_ors,
                 MAX(CASE WHEN rxn.payer_cd = 'R'                       THEN 1 ELSE 0 END) AS medicaid_payer_ripae
            FROM {population} pop
       LEFT JOIN {lookback} lb
              ON pop.riipl_id = lb.riipl_id
       LEFT JOIN {medicaid_enrollment} me
              ON pop.riipl_id = me.riipl_id AND
                 lb.yrmo = me.yrmo
       LEFT JOIN {dim_aid_ctg_cde} dim
              ON me.aid_category = dim.aid_ctg_cde
       LEFT JOIN {recip_x_ssn} rxn
              ON me.re_unique_id = rxn.recipient_id
        GROUP BY pop.riipl_id
          """.format(**globals())

    with cx_Oracle.connect("/") as cxn:
        features = features.join(pd.read_sql(sql, cxn).set_index(index))

    features = features.fillna(0)

    labels = {
        "MEDICAID_N_IDS":
        "Number of unique Medicaid IDs",
        "MEDICAID_PREGNANT":
        "Medicaid eligibility category contains the word 'pregnant'",
        "MEDICAID_POSTPARTUM":
        "Medicaid eligibility category contains the word 'postpartum'",
        "MEDICAID_BLIND":
        "Medicaid eligibility category contains the word 'blind'",
        "MEDICAID_DISABLED":
        "Medicaid eligibility category contains the word 'disabled'",
        "MEDICAID_ALIEN":
        "Medicaid eligibility category contains the word 'alien'",
        "MEDICAID_CHILD":
        "Medicaid eligibility category contains the word 'child'",
        "MEDICAID_MED_NEEDY":
        "Eligible for Medicaid as medically needy",
        "MEDICAID_MANAGED_CARE":
        "Enrolled in Medicaid managed care",
        "MEDICAID_PREM_PAYMENT":
        "Enrolled in Medicaid premium payment plan",
        "MEDICAID_PAYER_BHDDH":
        "Medicaid payer code is BHDDH",
        "MEDICAID_PAYER_CMAP":
        "Enrolled in RI Community Medication Assistance Program",
        "MEDICAID_PAYER_DOC":
        "Medicaid payer code is Department of Corrections",
        "MEDICAID_PAYER_AIDS":
        "Medicaid payer code is Ryan White AIDS Drug Assistance Program",
        "MEDICAID_PAYER_ORS":
        "Medicaid payer code is ORS",
        "MEDICAID_PAYER_RIPAE":
        "Enrolled in RI Pharmaceutical Assistance to the Elderly"
    }

    SaveFeatures(features,
                 out,
                 manifest,
                 population,
                 labels,
                 bool_features=[f for f in labels if f != "MEDICAID_N_IDS"])