Exemplo n.º 1
0
    def __init__(self, env, master_policy,old_master_policy, sub_policies, old_sub_policies,
                comm, clip_param=0.2, entcoeff=0, optim_epochs=10,
                optim_stepsize=3e-4, optim_batchsize=64):
        self.clip_param = clip_param
        self.entcoeff = entcoeff
        self.optim_epochs = optim_epochs
        self.optim_stepsize = optim_stepsize
        self.optim_batchsize = optim_batchsize
        self.num_subpolicies = len(sub_policies)
        self.sub_policies = sub_policies
        self.master_policy = master_policy
        ob_space = env.observation_space
        ac_space = env.action_space
        self.sp_ac = sub_policies[0].pdtype.sample_placeholder([None])
        atarg = tf.placeholder(dtype=tf.float32, shape=[None])
        ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return
        # for training theta
        # inputs for training theta
        ob = U.get_placeholder_cached(name="ob")
        ob_master = U.get_placeholder_cached(name="adv_ob")
        ac_master = master_policy.pdtype.sample_placeholder([None])
        loss_master = self.policy_loss_master(master_policy, old_master_policy, ob_master, ac_master, atarg, ret, clip_param)
        self.master_policy_var_list = master_policy.get_trainable_variables()
        self.master_loss = U.function([ob_master, ac_master, atarg, ret], U.flatgrad(loss_master, self.master_policy_var_list))
        self.master_adam = MpiAdam(self.master_policy_var_list, comm=comm)


        self.assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
            for (oldv, newv) in zipsame(old_master_policy.get_variables(), master_policy.get_variables())])


        self.assign_subs = []
        self.change_subs = []
        self.adams = []
        self.losses = []



        for i in range(self.num_subpolicies):
            varlist = sub_policies[i].get_trainable_variables()
            self.adams.append(MpiAdam(varlist))
            # loss for test
            loss = self.policy_loss(sub_policies[i], sub_policies[(i-1)%2], old_sub_policies[i], ob, self.sp_ac, atarg, ret, clip_param)
            self.losses.append(U.function([ob, self.sp_ac, atarg, ret], U.flatgrad(loss, varlist)))

            self.assign_subs.append(U.function([],[], updates=[tf.assign(oldv, newv)
                for (oldv, newv) in zipsame(old_sub_policies[i].get_variables(), sub_policies[i].get_variables())]))
            self.zerograd = U.function([], self.nograd(varlist))

        U.initialize()

        self.master_adam.sync()
        for i in range(self.num_subpolicies):
            self.adams[i].sync()
Exemplo n.º 2
0
    def __init__(self, env, policy, old_policy, sub_policies, old_sub_policies, comm, clip_param=0.2, entcoeff=0, optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64):
        self.policy = policy
        self.clip_param = clip_param
        self.entcoeff = entcoeff
        self.optim_epochs = optim_epochs
        self.optim_stepsize = optim_stepsize
        self.optim_batchsize = optim_batchsize
        self.num_subpolicies = len(sub_policies)
        self.sub_policies = sub_policies
        ob_space = env.observation_space
        ac_space = env.action_space
        if WRITE_SCALAR:
            self.scalar_writer = tf.summary.FileWriter(osp.join("savedir/",'checkpoints', 'scalar%d' % time.time()))

        # for training theta
        # inputs for training theta
        ob = U.get_placeholder_cached(name="ob")
        ac = policy.pdtype.sample_placeholder([None])
        atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
        ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return
        total_loss = self.policy_loss(policy, old_policy, ob, ac, atarg, ret, clip_param)
        self.master_policy_var_list = policy.get_trainable_variables()
        self.master_loss = U.function([ob, ac, atarg, ret], U.flatgrad(total_loss, self.master_policy_var_list))
        self.master_adam = MpiAdam(self.master_policy_var_list, comm=comm)
        summ = tf.summary.scalar("total_loss", total_loss)
        self.calc_summary = U.function([ob, ac, atarg, ret],[summ])


        self.assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
            for (oldv, newv) in zipsame(old_policy.get_variables(), policy.get_variables())])

        self.assign_subs = []
        self.change_subs = []
        self.adams = []
        self.losses = []
        self.sp_ac = sub_policies[0].pdtype.sample_placeholder([None])
        for i in range(self.num_subpolicies):
            varlist = sub_policies[i].get_trainable_variables()
            self.adams.append(MpiAdam(varlist))
            # loss for test
            loss = self.policy_loss(sub_policies[i], old_sub_policies[i], ob, self.sp_ac, atarg, ret, clip_param)
            self.losses.append(U.function([ob, self.sp_ac, atarg, ret], U.flatgrad(loss, varlist)))

            self.assign_subs.append(U.function([],[], updates=[tf.assign(oldv, newv)
                for (oldv, newv) in zipsame(old_sub_policies[i].get_variables(), sub_policies[i].get_variables())]))
            self.zerograd = U.function([], self.nograd(varlist))

        U.initialize()

        self.master_adam.sync()
        for i in range(self.num_subpolicies):
            self.adams[i].sync()
Exemplo n.º 3
0
def test_MpiAdam():
    np.random.seed(0)
    tf.set_random_seed(0)

    a = tf.Variable(np.random.randn(3).astype('float32'))
    b = tf.Variable(np.random.randn(2, 5).astype('float32'))
    loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b))

    stepsize = 1e-2
    update_op = tf.train.AdamOptimizer(stepsize).minimize(loss)
    do_update = U.function([], loss, updates=[update_op])

    tf.get_default_session().run(tf.global_variables_initializer())
    for i in range(10):
        print(i, do_update())

    tf.set_random_seed(0)
    tf.get_default_session().run(tf.global_variables_initializer())

    var_list = [a, b]
    lossandgrad = U.function([], [loss, U.flatgrad(loss, var_list)],
                             updates=[update_op])
    adam = MpiAdam(var_list)

    for i in range(10):
        l, g = lossandgrad()
        adam.update(g, stepsize)
        print(i, l)
    def __init__(self,
                 env,
                 sub_policy,
                 old_sub_policy,
                 comm,
                 clip_param=0.2,
                 entcoeff=0,
                 optim_epochs=10,
                 optim_stepsize=3e-4,
                 optim_batchsize=64,
                 args=None):
        # self.policy = policy
        self.clip_param = clip_param
        self.entcoeff = entcoeff
        self.optim_epochs = optim_epochs
        self.optim_stepsize = optim_stepsize
        self.optim_batchsize = optim_batchsize
        # self.num_subpolicies = len(sub_policies)
        self.sub_policy = sub_policy
        self.args = args
        ob_space = env.observation_space
        ac_space = env.action_space

        # for training theta
        # inputs for training theta
        ob = U.get_placeholder_cached(name="ob")
        # ac = policy.pdtype.sample_placeholder([None])
        atarg = tf.placeholder(
            dtype=tf.float32,
            shape=[None])  # Target advantage function (if applicable)
        ret = tf.placeholder(dtype=tf.float32,
                             shape=[None])  # Empirical return
        entcoeff = tf.placeholder(dtype=tf.float32, name="entcoef")
        # total_loss = self.policy_loss(policy, old_policy, ob, ac, atarg, ret, clip_param, entcoeff)
        # self.master_policy_var_list = policy.get_trainable_variables()
        # self.master_loss = U.function([ob, ac, atarg, ret, entcoeff], U.flatgrad(total_loss, self.master_policy_var_list))
        # self.master_adam = MpiAdam(self.master_policy_var_list, comm=comm)

        # self.assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        #     for (oldv, newv) in zipsame(old_policy.get_variables(), policy.get_variables())])

        self.assign_subs = []
        self.change_subs = []
        self.adams = []
        self.losses = []
        self.sp_ac = sub_policy.pdtype.sample_placeholder([None])
        # for i in range(self.num_subpolicies):
        varlist = sub_policy.get_trainable_variables()
        self.adams.append(MpiAdam(varlist))
        # loss for test
        loss = self.policy_loss(sub_policy, old_sub_policy, ob, self.sp_ac,
                                atarg, ret, clip_param, entcoeff)
        self.losses.append(
            U.function([ob, self.sp_ac, atarg, ret, entcoeff],
                       U.flatgrad(loss, varlist)))

        self.assign_subs.append(
            U.function(
                [], [],
                updates=[
                    tf.assign(oldv, newv)
                    for (oldv, newv) in zipsame(old_sub_policy.get_variables(),
                                                sub_policy.get_variables())
                ]))
        self.zerograd = U.function([], self.nograd(varlist))

        U.initialize()

        # self.master_adam.sync()
        # for i in range(self.num_subpolicies):
        self.adams[0].sync()